给你一个数N,让你求出若干个数使得这若干个数的最小公倍数为N,并且这若干个数的和最小。
利用唯一分解定理,将n分解成n = p1 ^ k1 * p2 ^ k2 * ... * pm ^ km,然后求解sum = ∑(1≤i≤m)pi ^ ki就是我们要的答案,虽然我是只知道这样能保证最小公倍数是n但是不知道为什么这样是最小……(看大佬的题解 大概是保证各个因子是互素,否则可以让他们各除以最大公约数,得到的最小公倍数仍不变)
然后要注意几个特殊情况:n只有一个因子时和n到int极限时,第一次就是ans没强制转换成LL溢出了……
AC代码:
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
typedef long long LL;
int main()
{
int n,kase=1;
while(cin>>n&&n)
{
int m=(int)sqrt((double)n+0.5);
int t=n,num=0;
LL ans=0;
for(int i=2;i<=m;i++)
{
if(t%i==0)
{
num++;
int tmp=1;
while(t%i==0)
{
tmp*=i;
t/=i;
}
ans+=tmp;
}
}
if(n==t)
ans=(LL)n+1;
else if(num==1||t!=1)
ans+=t;
printf("Case %d: %lld\n",kase++,ans);
}
return 0;
}