POJ 1985 Strange Towers of Hanoi

题目:

输出盘子为1~12的四柱汉诺塔问题的答案

分析:

设f(n)为四柱汉诺塔n盘子的答案;设d(n)为三柱汉诺塔n盘子的答案

d(n)=d(n-1)*2+1

f(n)=min{f(i)*2+d(n-i)}(0<=i<n)

d的推导就不说了,关于f,可以发现所有的移动方法(A->D)都可以归结为以下三步

①i个盘子通过四柱移动(A->B or C)步数为f(i)

②剩下n-i个盘子通过三柱移动(A->D)步数为d(n-i)

③i个盘子通过四柱移动(B or C->D)步数为f(i)

所以有f(n)=min{f(i)*2+d(n-i)}(0<=i<n)

代码:

#include<iostream>
#include<cstring>
using namespace std;
//typedef long long ll;
int d[20],f[20];
int main(){
	memset(f,0x3f,sizeof(f));
	d[1]=1;f[1]=1;f[0]=0;
	for(int i=2;i<=12;i++){
		d[i]=d[i-1]*2+1;
	}
	//for(int i=1;i<=12;i++)cout<<d[i]<<endl;
	for(int i=2;i<=12;i++){
		for(int j=0;j<i;j++){
			if(f[i]>f[j]*2+d[i-j])
			f[i]=f[j]*2+d[i-j];
		}
	}
	for(int i=1;i<=12;i++){
		cout<<f[i]<<endl;
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值