题目:
输出盘子为1~12的四柱汉诺塔问题的答案
分析:
设f(n)为四柱汉诺塔n盘子的答案;设d(n)为三柱汉诺塔n盘子的答案
d(n)=d(n-1)*2+1
f(n)=min{f(i)*2+d(n-i)}(0<=i<n)
d的推导就不说了,关于f,可以发现所有的移动方法(A->D)都可以归结为以下三步
①i个盘子通过四柱移动(A->B or C)步数为f(i)
②剩下n-i个盘子通过三柱移动(A->D)步数为d(n-i)
③i个盘子通过四柱移动(B or C->D)步数为f(i)
所以有f(n)=min{f(i)*2+d(n-i)}(0<=i<n)
代码:
#include<iostream>
#include<cstring>
using namespace std;
//typedef long long ll;
int d[20],f[20];
int main(){
memset(f,0x3f,sizeof(f));
d[1]=1;f[1]=1;f[0]=0;
for(int i=2;i<=12;i++){
d[i]=d[i-1]*2+1;
}
//for(int i=1;i<=12;i++)cout<<d[i]<<endl;
for(int i=2;i<=12;i++){
for(int j=0;j<i;j++){
if(f[i]>f[j]*2+d[i-j])
f[i]=f[j]*2+d[i-j];
}
}
for(int i=1;i<=12;i++){
cout<<f[i]<<endl;
}
return 0;
}