C - N的阶乘 mod P

C - N的阶乘 mod P 
输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)
例如:n = 10, P = 11,10! = 3628800
3628800 % 11 = 10
Input
两个数N,P,中间用空格隔开。(N < 10000, P < 10^9)
Output
输出N! mod P的结果。
Sample Input
10 11
Sample Output
10

#include<iostream>
using namespace std;
typedef long long ll;
int main(){
	ll n,m;
	cin>>n>>m;
	ll ans=1;
	for(ll i=1;i<=n;i++){
		ans=(ans*(i%m))%m;//ans%m*i%m
	}
	cout<<ans<<endl;
	return 0;
}

 

在 C++ 中,计算大组合数通常涉及动态规划,特别是当涉及到模运算时,因为直接计算阶乘可能导致数值溢出。你可以使用 Lucas 定理或递推算法结合取模操作来解决这个问题。这里是一种常见的做法,即使用 `modular_inverse` 函数来处理模逆和乘法的优化。 ```cpp #include <iostream> using namespace std; // 计算 a * b mod p 的快速幂方法 long long modular_multiply(long long a, long long b, int p) { long long res = 0; a %= p; while (b > 0) { if (b % 2 == 1) { res = (res + a) % p; } a = (a * 2) % p; // 使用双倍法加速乘法 b /= 2; } return res; } // 计算阶乘模 p 的逆元 long long modular_inverse(long long num, int p) { long long inv = 1, temp = p; for (int i = 2; i <= num / temp; ++i) { inv = (inv * temp) % p; temp = (temp * temp) % p; } return (num * inv) % p; } // 用 Lucas 定理计算组合数 long long combination(int n, int m, int p) { if (m > n || m < 0 || n < 0) return 0; long long fact[n + 1], inv_fact[n + 1]; fact[0] = inv_fact[0] = 1; for (int i = 1; i <= n; ++i) { fact[i] = fact[i - 1] * i % p; inv_fact[i] = modular_inverse(fact[i], p); } long long res = fact[n]; res = modular_multiply(res, inv_fact[m], p); res = modular_multiply(res, inv_fact[n - m], p); return res; } int main() { int n, m; cin >> n >> m; cout << "组合数 mod 100000007: " << combination(n, m, 100000007) << endl; return 0; } ``` 在这个代码中,我们首先计算了阶乘和它们的逆元,然后利用组合数公式 `C(n, m) = n! / [m!(n-m)!]` 来计算组合数,并在每次乘法中都对 `p` 取模,避免数值溢出。输入 n 和 m 后,程序将输出 n 个数中选 m 个的组合数,结果对 100000007 取模。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值