一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下:
首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2};然后将计算的和对11取模得到值Z
;最后按照以下关系对应Z
值与校验码M
的值:
Z:0 1 2 3 4 5 6 7 8 9 10
M:1 0 X 9 8 7 6 5 4 3 2
现在给定一些身份证号码,请你验证校验码的有效性,并输出有问题的号码。
输入格式:
输入第一行给出正整数N(≤100)是输入的身份证号码的个数。随后N行,每行给出1个18位身份证号码。
输出格式:
按照输入的顺序每行输出1个有问题的身份证号码。这里并不检验前17位是否合理,只检查前17位是否全为数字且最后1位校验码计算准确。如果所有号码都正常,则输出All passed
。
输入样例1:
4
320124198808240056
12010X198901011234
110108196711301866
37070419881216001X
输出样例1:
12010X198901011234
110108196711301866
37070419881216001X
#include<iostream>
#include<string>
using namespace std;
char a[]={'1','0','X','9','8','7','6','5','4','3','2'};
int b[]={7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2};
bool judge(string s){
int l=s.length();
int sum=0;
for(int i=0;i<l-1;i++){
if(s[i]>='0'&&s[i]<='9') {
sum+=(s[i]-'0')*b[i];
}else return 0;
}
if(a[sum%11]==s[l-1]) return 1;
else return 0;
}
int main(){
bool flag=0;
int n;
string s;
cin>>n;
while(n--){
cin>>s;
if(!judge(s)){
flag=1;
cout<<s<<endl;
}
}
if(!flag) cout<<"All passed"<<endl;
return 0;
}
本题要求你计算A−B。不过麻烦的是,A和B都是字符串 —— 即从字符串A中把字符串B所包含的字符全删掉,剩下的字符组成的就是字符串A−B。
输入格式:
输入在2行中先后给出字符串A和B。两字符串的长度都不超过104,并且保证每个字符串都是由可见的ASCII码和空白字符组成,最后以换行符结束。
输出格式:
在一行中打印出A−B的结果字符串。
输入样例:
I love GPLT! It's a fun game!
aeiou
输出样例:
I lv GPLT! It's fn gm!
#include<iostream>
#include<algorithm>
using namespace std;
bool b[]={0};
int main(){
string s1,s2;
getline(cin,s1);
getline(cin,s2);
for(int i=0;i<s2.length();i++) b[s2[i]]=1;
for(int i=0;i<s1.length();i++){
if(!b[s1[i]]) cout<<s1[i];
}
cout<<endl;
return 0;
}
本题的要求很简单,就是求N
个数字的和。麻烦的是,这些数字是以有理数分子/分母
的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N
(≤100)。随后一行按格式a1/b1 a2/b2 ...
给出N
个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分
,其中分数部分写成分子/分母
,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1:
5
2/5 4/15 1/30 -2/60 8/3
输出样例1:
3 1/3
输入样例2:
2
4/3 2/3
输出样例2:
2
输入样例3:
3
1/3 -1/6 1/8
输出样例3:
7/24
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
ll gcd(ll a,ll b){
return b?gcd(b,a%b):a;
}
ll a[105],b[105];
int main(){
ll n;
cin>>n;
for(ll i=1;i<=n;i++){
cin>>a[i];
scanf("/");
cin>>b[i];
}
ll tem=b[1]*b[2]/gcd(b[1],b[2]);
for(ll i=3;i<=n;i++){
tem=tem*b[i]/gcd(tem,b[i]);
}
ll sum=0;
for(ll i=1;i<=n;i++){
sum+=(a[i]*(tem/b[i]));
}
if(sum%tem){
if(sum/tem){
ll k=sum/tem;
cout<<sum/tem<<' '<<(sum-tem*k)/gcd(sum-tem*k,tem)<<'/'<<tem/gcd(sum-tem*k,tem)<<endl;
}
else {
ll k=sum/tem;
cout<<(sum-tem*k)/gcd(sum-tem*k,tem)<<'/'<<tem/gcd(sum-tem*k,tem)<<endl;
}
}
else cout<<sum/tem<<endl;
return 0;
}
给定两个整数集合,它们的相似度定义为:Nc/Nt×100%。其中Nc是两个集合都有的不相等整数的个数,Nt是两个集合一共有的不相等整数的个数。你的任务就是计算任意一对给定集合的相似度。
输入格式:
输入第一行给出一个正整数N(≤50),是集合的个数。随后N行,每行对应一个集合。每个集合首先给出一个正整数M(≤104),是集合中元素的个数;然后跟M个[0,109]区间内的整数。
之后一行给出一个正整数K(≤2000),随后K行,每行对应一对需要计算相似度的集合的编号(集合从1到N编号)。数字间以空格分隔。
输出格式:
对每一对需要计算的集合,在一行中输出它们的相似度,为保留小数点后2位的百分比数字。
输入样例:
3
3 99 87 101
4 87 101 5 87
7 99 101 18 5 135 18 99
2
1 2
1 3
输出样例:
50.00%
33.33%
#include<iostream>
#include<algorithm>
#include<set>
#include<vector>
using namespace std;
set<int>se[55],SE;
bool b[]={0};
int main(){
int a,k,x;
cin>>a;
for(int i=1;i<=a;i++){
scanf("%d",&k);
for(int j=0;j<k;j++){
scanf("%d",&x);
se[i].insert(x);
}
}
int t;
cin>>t;
int n,m;
while(t--){
SE.clear();
scanf("%d%d",&n,&m);
for(set<int>::iterator it = se[n].begin();it!=se[n].end();it++) SE.insert(*it);
for(set<int>::iterator it = se[m].begin();it!=se[m].end();it++) SE.insert(*it);
int cnt=SE.size();
int l1=se[n].size();
int l2=se[m].size();
printf("%.2f%%\n",100.0*(l1+l2-cnt)/cnt);
}
return 0;
}
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main(){
string s;
int ans=0;
getline(cin,s);
int l=s.length();
for(int i=0;i<l;i++){
for(int j=1;j<=l-i;j++){
string tem=s.substr(i,j);
string temp=tem;
reverse(tem.begin(),tem.end());
if(temp==tem&&tem.length()>=ans) ans=tem.length();
}
}
cout<<ans<<endl;
return 0;
}
对给定的字符串,本题要求你输出最长对称子串的长度。例如,给定Is PAT&TAP symmetric?
,最长对称子串为s PAT&TAP s
,于是你应该输出11。
输入格式:
输入在一行中给出长度不超过1000的非空字符串。
输出格式:
在一行中输出最长对称子串的长度。
输入样例:
Is PAT&TAP symmetric?
输出样例:
11
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main(){
string s;
int ans=0;
getline(cin,s);
int l=s.length();
for(int i=0;i<l;i++){
for(int j=1;j<=l-i;j++){
string tem=s.substr(i,j);
string temp=tem;
reverse(tem.begin(),tem.end());
if(temp==tem&&tem.length()>=ans) ans=tem.length();
}
}
cout<<ans<<endl;
return 0;
}