天梯赛训练1

 

一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下:

首先对前17位数字加权求和,权重分配为:{7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2};然后将计算的和对11取模得到值Z;最后按照以下关系对应Z值与校验码M的值:

Z:0 1 2 3 4 5 6 7 8 9 10
M:1 0 X 9 8 7 6 5 4 3 2

现在给定一些身份证号码,请你验证校验码的有效性,并输出有问题的号码。

输入格式:

输入第一行给出正整数N(≤100)是输入的身份证号码的个数。随后N行,每行给出1个18位身份证号码。

输出格式:

按照输入的顺序每行输出1个有问题的身份证号码。这里并不检验前17位是否合理,只检查前17位是否全为数字且最后1位校验码计算准确。如果所有号码都正常,则输出All passed

输入样例1:

4
320124198808240056
12010X198901011234
110108196711301866
37070419881216001X

输出样例1:

12010X198901011234
110108196711301866
37070419881216001X
#include<iostream>
#include<string>
using namespace std;
char a[]={'1','0','X','9','8','7','6','5','4','3','2'};
int b[]={7,9,10,5,8,4,2,1,6,3,7,9,10,5,8,4,2};
bool judge(string s){
	int l=s.length();
	int sum=0;
	for(int i=0;i<l-1;i++){
		if(s[i]>='0'&&s[i]<='9') {
			sum+=(s[i]-'0')*b[i];
		}else return 0;
	}
	if(a[sum%11]==s[l-1]) return 1;
	else return 0;
}
int main(){
	bool flag=0;
	int n;
	string s;
	cin>>n;
	while(n--){
		cin>>s;
		if(!judge(s)){
			flag=1;
			cout<<s<<endl;
		} 
	}
	if(!flag) cout<<"All passed"<<endl;
	return 0;
}

本题要求你计算AB。不过麻烦的是,AB都是字符串 —— 即从字符串A中把字符串B所包含的字符全删掉,剩下的字符组成的就是字符串AB

输入格式:

输入在2行中先后给出字符串AB。两字符串的长度都不超过10​4​​,并且保证每个字符串都是由可见的ASCII码和空白字符组成,最后以换行符结束。

输出格式:

在一行中打印出AB的结果字符串。

输入样例:

I love GPLT!  It's a fun game!
aeiou

输出样例:

I lv GPLT!  It's  fn gm!

 

#include<iostream>
#include<algorithm>
using namespace std;
bool b[]={0};
int main(){
  string s1,s2;
  getline(cin,s1);
  getline(cin,s2);
  for(int i=0;i<s2.length();i++) b[s2[i]]=1;
  for(int i=0;i<s1.length();i++){
  	if(!b[s1[i]]) cout<<s1[i];
  }
  cout<<endl;
  return 0;
}

本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。

输入格式:

输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。

输出格式:

输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。

输入样例1:

5
2/5 4/15 1/30 -2/60 8/3

输出样例1:

3 1/3

输入样例2:

2
4/3 2/3

输出样例2:

2

输入样例3:

3
1/3 -1/6 1/8

输出样例3:

7/24
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
ll gcd(ll a,ll b){
	return b?gcd(b,a%b):a;
}
ll a[105],b[105];
int main(){
  ll n;
  cin>>n;
  for(ll i=1;i<=n;i++){
  	cin>>a[i];
	scanf("/");
	cin>>b[i];
  } 
  ll tem=b[1]*b[2]/gcd(b[1],b[2]);
  for(ll i=3;i<=n;i++){
  	tem=tem*b[i]/gcd(tem,b[i]);
  }
  ll sum=0;
  for(ll i=1;i<=n;i++){
  	sum+=(a[i]*(tem/b[i]));
  }
  if(sum%tem){
  	if(sum/tem){
  		ll k=sum/tem;
  		cout<<sum/tem<<' '<<(sum-tem*k)/gcd(sum-tem*k,tem)<<'/'<<tem/gcd(sum-tem*k,tem)<<endl;
	} 
  	else {
  		ll k=sum/tem;
  		cout<<(sum-tem*k)/gcd(sum-tem*k,tem)<<'/'<<tem/gcd(sum-tem*k,tem)<<endl;
	}
  }
  else cout<<sum/tem<<endl;
  return 0;
}

给定两个整数集合,它们的相似度定义为:Nc​​/Nt​​×100%。其中Nc​​是两个集合都有的不相等整数的个数,Nt​​是两个集合一共有的不相等整数的个数。你的任务就是计算任意一对给定集合的相似度。

输入格式:

输入第一行给出一个正整数N(≤50),是集合的个数。随后N行,每行对应一个集合。每个集合首先给出一个正整数M(≤10​4​​),是集合中元素的个数;然后跟M个[0,10​9​​]区间内的整数。

之后一行给出一个正整数K(≤2000),随后K行,每行对应一对需要计算相似度的集合的编号(集合从1到N编号)。数字间以空格分隔。

输出格式:

对每一对需要计算的集合,在一行中输出它们的相似度,为保留小数点后2位的百分比数字。

输入样例:

3
3 99 87 101
4 87 101 5 87
7 99 101 18 5 135 18 99
2
1 2
1 3

输出样例:

50.00%
33.33%
#include<iostream>
#include<algorithm>
#include<set>
#include<vector>
using namespace std;
set<int>se[55],SE;
bool b[]={0};
int main(){
  int a,k,x;
  cin>>a;
  for(int i=1;i<=a;i++){
  	scanf("%d",&k);
  	for(int j=0;j<k;j++){
  		scanf("%d",&x);
		se[i].insert(x);	
	}
  }
  int t;
  cin>>t;
  int n,m;
  while(t--){
  	SE.clear();
  	scanf("%d%d",&n,&m);
  	for(set<int>::iterator it = se[n].begin();it!=se[n].end();it++) SE.insert(*it);
  	for(set<int>::iterator it = se[m].begin();it!=se[m].end();it++) SE.insert(*it);
  	int cnt=SE.size();
  	int l1=se[n].size();
  	int l2=se[m].size();
  	printf("%.2f%%\n",100.0*(l1+l2-cnt)/cnt);
  }
  return 0;
}
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main(){
  string s;
  int ans=0;
  getline(cin,s);
  int l=s.length();
  for(int i=0;i<l;i++){
  	for(int j=1;j<=l-i;j++){
  		string tem=s.substr(i,j);
	  	string temp=tem;
	  	reverse(tem.begin(),tem.end());
	  	if(temp==tem&&tem.length()>=ans) ans=tem.length();
	}
  }
  cout<<ans<<endl;
  return 0;
}

对给定的字符串,本题要求你输出最长对称子串的长度。例如,给定Is PAT&TAP symmetric?,最长对称子串为s PAT&TAP s,于是你应该输出11。

输入格式:

输入在一行中给出长度不超过1000的非空字符串。

输出格式:

在一行中输出最长对称子串的长度。

输入样例:

Is PAT&TAP symmetric?

输出样例:

11
#include<iostream>
#include<algorithm>
using namespace std;
#define ll long long
int main(){
  string s;
  int ans=0;
  getline(cin,s);
  int l=s.length();
  for(int i=0;i<l;i++){
  	for(int j=1;j<=l-i;j++){
  		string tem=s.substr(i,j);
	  	string temp=tem;
	  	reverse(tem.begin(),tem.end());
	  	if(temp==tem&&tem.length()>=ans) ans=tem.length();
	}
  }
  cout<<ans<<endl;
  return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值