一、
eg.1
dates = pd.date_range('20190101',periods=6)
df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns=['A','B','C','D'])
# 选取某列
print(df['A'])
print(df.A)
df.['A']和df.A的效果完全一样
dg.2
print(df[0:3])
print(df['20190102':'20190104'])
更高级的选择数据
二、select by label:loc
eg.3
print(df)
print(df.loc['20190102']) # 选择20190102这行数据
print(df.loc[:,['A','B'] ] ) # 保存所有行的数据,对列的数据进行筛选
print(df.loc['20190102',['A','B']])
三、select by position:iloc
eg.4
print(df.iloc[3]) # 第3行
print(df.iloc[3,1]) # 第3行,第1位
print(df.iloc[3:5,1:3]) # 对它切片
print(df.iloc[[1,3,5],1:3]) # 逐个不连续的筛选
四、mixed selection:ix
eg.5
print(df.ix[:3,['A','C']]) #第0行到第3行,A、C两列
五、Boolean indexing
eg.6
print(df[df.A > 8]) #以A这列的值作为筛选对象