- 博客(27)
- 收藏
- 关注
原创 [Lecture 11 ] Detection and Segmentation(检测和分割)- cs231n 2017
文章目录0. 引入1. 语义分割(Semantic Segmentation)1.1 实现方法1.1.1 滑动窗口:1.1.2 全卷积神经网络2. 图像分类和定位2.1 基础结构3. 目标检测3.1 滑动窗口的方法3.2 基于候选区域的检测(Region Proposals)3.2.1 R-CNN0. 引入除了图像分类的视觉任务:图像分割(语义分割,实例分割)、目标检测(单目标检测,多目标检测):1. 语义分割(Semantic Segmentation)只区分图像中不同像素的分类,但是不区分同
2020-12-15 22:57:48 802
原创 [CS231n Assignment 3 #03] 网络可视化:显著映射、类可视化和欺骗图像
文章目录作业介绍1. Network Visualization (PyTorch)1.1 Helper Functions2. Pretrained Model作业介绍作业主页:Assignment #3作业目的:作业源代码: StyleTransfer-TensorFlow.ipynb/StyleTransfer-PyTorch.ipynb本作业基于 Pytorch 完成1. Network Visualization (PyTorch)In this notebook we will
2020-12-14 23:19:45 1327 2
原创 [CS231n Assignment 3 #01] 简单RNN的图像字幕(Image Captioning with Vanilla RNNs)
文章目录作业介绍0. 事前准备1. Microsoft COCO1.1 可视化数据2. 递归神经网络(RNN)作业介绍作业主页:Assignment #3作业目的:作业源代码:RNN_Captioning.ipynb0. 事前准备在这个练习中,您将实现一个普通的递归神经网络,并使用它们来训练一个可以为图像生成新标题的模型。安装H5py:我们将使用的COCO数据集以HDF5格式存...
2020-12-12 21:57:24 1545
原创 [CS231n Assignment 3 #00] 第三次作业介绍
1.作业介绍作业主页:Assignment #3作业任务:在这次作业中,你将实现循环网络,并将它们应用于微软COCO数据集上的图像字幕。您还将探索在ImageNet上可视化预训练模型的特征的方法,以及实现风格迁移Style Transfer模型。最后,您将训练一个生成式对抗网络来生成看起来像训练数据集的图像!作业目的:理解递归神经网络(RNNs)的结构,以及它们如何通过随时间共享权值对...
2020-12-11 22:31:44 1012
原创 [CS231n Assignment 2 #03 ] 随机失活(Dropout)
文章目录作业介绍作业介绍课堂介绍:[Lecture 7 ] Training Neural Networks II(训练神经网络II)作业主页:Assignment 2作业目的:为了使深度神经网络更好的得到训练,一个方案是使用更复杂的优化方法:SGD+Momentum,Adam,RMSProp等。另一个方案就是改变网络结构,比如我们这节要完成的批量归一化。官方示例代码: Assignment 2 code作业源文件 BatchNormlization.ipynb...
2020-12-11 21:40:12 742 1
原创 [CS231n Assignment 2 #04 ] 卷积神经网络(Convolutional Networks )
文章目录作业介绍1. Convolution: Naive forward pass作业介绍课堂笔记:[Lecture 9 ] CNN Architectures(CNN架构)作业主页:Assignment 2作业目的:为了使深度神经网络更好的得到训练,一个方案是使用更复杂的优化方法:SGD+Momentum,Adam,RMSProp等。另一个方案就是改变网络结构,比如我们这节要完成的批量归一化。官方示例代码: Assignment 2 code作业源文件 ConvolutionalNetwo
2020-12-11 21:38:52 2044 2
原创 [CS231n Assignment 2 #05 ] 深度学习框架——Pytorch
作业主页:Assignment 2官方示例代码: Assignment 2 code作业源文件 PyTorch.ipynb作业内容:这个作业有5个部分。您将在不同的抽象级别上学习PyTorch,这将帮助您更好地理解它,并为最终项目做好准备。1. Preparation: we will use CIFAR-10 dataset.2. Barebones PyTorch: we w...
2020-04-21 22:58:19 2630 1
原创 [Lecture 9 ] CNN Architectures(CNN架构)
文章目录课堂提问1. LeNet-52. AlexNet3. ZFNet4. VGGNet5. GoogleNet6. ResNet (残差网络)7. 比较8. 一些别的架构总结推荐阅读课堂提问Q1: 为什么学习ResNet中学习残差比学习直接映射要好?A1: 具体请阅读原论文,但是从直觉上来说,我们直接学习映射,然后网络层堆的越来越多,最后可能太复杂了,但是如果学习残差,则我们加深网络的...
2020-04-20 10:04:43 640
原创 [Lecture 8 ] Deep Learning Software(深度学习软件)
文章目录课堂问答前言1. TensorFlow(静态图)2. Pytorch(动态计算图)3. 动态图和静态图4. Caffe/Caffe2建议和总结课堂问答前言现在深度学习框架发展的太快了(文中的有些代码已经发生了些许变化),本文主要记录课中讲的关于 Pytorch、Caffe 和 TensorFlow 的内。重点是Pytorch。在之前的理论课上,我们知道,要完成神经网络的训练,我们最...
2020-04-20 09:53:08 725
原创 [Lecture 7 ] Training Neural Networks II(训练神经网络II)
文章目录课堂问答1. 更好的优化 (Fancier optimization)1.1 SGD 优化1.2 基于动量的(Momentum)SGD1.3 AdaGrad1.4 Adam1.5 学习率的选择1.6 二阶优化(Second-Order Optimization)1.7 模型集成2. 正则化 (Regularization)2.1 权重约束2.2 随机失活(Dropout)2.3 局部最大...
2020-04-20 09:52:31 525
原创 [Lecture 6 ] Training Neural Networks I(训练神经网络I)
文章目录课堂问答1. 激活函数(Activation Function)1.1 Sigmoid激活函数1.2 tanh(x)激活函数1.3 ReLU函数1.4 Leaky ReLU激活函数1.5 指数线性单元(ELU)1.6 最大输出单元(Maxout)2. 数据预处理(Data Preprocessing)3. 权重初始化(weight initialization)3.3 Xavier 初始...
2020-04-20 09:51:51 793
原创 [Lecture 5] Convolutional Neural Network(卷积神经网络)
文章目录课堂问答1. 卷积神经网络的历史2. 卷积神经网络的结构2.1 全连接层(Fully Connected Layer)2.2 卷积层(Convolution Layer )2.3 池化层(Pooling Layer)课堂问答卷积层在进行卷积的时候,怎么让卷积核与输入图像卷积?答: 可以将卷积核拉伸成一个一维向量,然后图像也拉伸成一个向量,然后进行点积。看成向量点积,卷积核怎么在输...
2020-04-20 09:48:56 368
原创 [Lecture 10 ]Recurrent Neural Network(循环神经网络)
文章目录课堂提问1. 引入2. 语言建模3. 图像描述(Image Caption)3.1 基础模型结构3.2 带有注意力的模型4. 视觉问答(Visual Question Answering)5. 多层RNN6. 改善的RNN结构6.1 引入——梯度传播(Gradient Flow)6.2 LSTM(长短时记忆网络)6.3 GRU(门控循环单元,Gait Recurrent Unit)总结(s...
2020-04-20 09:48:27 582
原创 [Lecture 4] Neural Networks(神经网络)
课堂提问在2层简单神经网络中,W1和W2有什么含义吗?答:W1依然可以看成是我们学习到的线性分类器中的各种各样的模板,而 hhh 表示这些模板的得分,W2将这些模板得分组合起来形成新的复杂模板。例如上面这个例子,假设我们既有头朝左的马,又有头朝右的马,那么对于一匹头朝左的马,可能一个模板分高一个模板分低,然后取 maxmaxmax 后保留其是左侧马的分数。注:这里的 max(0,W1X...
2020-04-11 16:06:58 346
原创 [CS231n Assignment 2 #00] 第二次作业介绍
1. 作业介绍作业主页:Assignment #2作业任务:本次作业,我们需要练习编写反向传播过程,以及训练神经网络和卷积神经网络作业目的:理解 神经网络(Neural Networks) ,知道它们是如何组织成分层结构的理解并实现(矢量化)的 反向传播(backpropagation) 过程理解并实现不同的 更新算法(update rules ) 来优化神经网络实现 批量归一化...
2020-04-11 16:04:01 700
原创 [CS231n Assignment 2 #01] 全连接神经网络(Fully-connected Neural Network)
文章目录作业介绍1.Fully-Connected Neural Nets 架构2. 初始化作业环境3. 实现全连接层(Affine Layer)3.1 前向传播3.2 反向传播4. ReLU激活函数5. "Sandwich" layers6. 损失层(Loss Layer)7. 两层神经网络(Two-layer network)8. 优化器(Solver)8.1 Solver剖析8.2 实际训...
2020-04-11 16:03:06 5378 1
原创 [CS231n Assignment 2 #02 ] 批量归一化[BatchNormalization]
文章目录作业介绍1. 批量归一化(Batch Normalization)1.1 BN层的前向传播(forward)1.2 BN层的反向传播1.3 Fully Connected Nets with Batch Normalization2. Batchnorm for deep networks3. Batch normalization and initialization4. Batch ...
2020-04-11 16:02:25 1630
原创 [CS231n Assignment #1] 简单图像分类器——高级图像特征分类
文章目录作业介绍1. 加载数据2. 提取特征3. 使用SVM进行训练5. 使用神经网络训练特征6. 测试集上测试作业介绍作业主页:Assignment #1作业目的:在之前的作业中,我们已经能够编写简单的分类器,接收原始RGB像素输入来进行分类,并且获得了不错的性能,本次作业中,我们将尝试使用从像素值中提取的稍微高级一点的特征(例如颜色直方图、HOG特征,SIFT特特征)来提升我们分...
2020-04-11 16:01:43 764
原创 [CS231n Assignment #1] 简单图像分类器——单隐层神经网络分类器
文章目录作业介绍知识点简单回顾1. 下载数据集2. 神经网络分类器2.1 实现神经网络分类器2.2 测试实现正确性2.3 在真实数据集CIFAR10上测试2.5 调节参数2.6 测试集(test)上测试作业问题参考资料作业介绍作业主页:Assignment #1官方给的示例代码:assigment #1 code知识点简单回顾神经网络(Neural Networks) 是一种...
2020-04-11 16:01:10 878
原创 [CS231n Assignment #1] 简单图像分类器——KNN分类器
文章目录作业介绍1. 下载数据集并加载2. KNN(K近邻分类器)2.1 加载数据集2.2 完成我们的KNN分类器2.3 测试KNN分类器3. 多折交叉验证调优作业介绍作业主页:Assignment #1作业目的:理解图像分类流程和数据驱动方法(训练和预测阶段)理解训练集(train dataset)、验证集(val dataset)、测试集(test dataset)的划分,以及验...
2020-04-11 16:00:04 625
原创 [CS231n Assignment #1] 简单图像分类器——Softmax线性分类器
文章目录作业介绍知识点简单回顾1. 下载数据集2. Softmax分类器2.1 加载图像并预处理2.2 实现损失函数2.3 使用随机梯度下降法优化2.4 完成预测2.5 使用验证集调参2.6 可视化权重作业问题参考资料作业介绍作业主页:Assignment #1作业目的:针对Softmax分类器,实现一个全向量化的 损失函数(loss function)实现损失函数的矢量化解析梯度(...
2020-04-11 15:59:14 766
原创 [CS231n Assignment #1] 简单图像分类器——SVM线性分类器
文章目录作业介绍知识点简单回顾1. 下载数据集2. SVM分类器2.1 预处理与显示2.2 完成SVM分类器作业提问参考资料作业介绍作业主页:Assignment #1作业目的:针对SVM,实现一个全向量化的 损失函数(loss function)实现损失函数的矢量化解析梯度(analytic gradient)用 数值梯度(numerical gradient) 检验解析梯度是否...
2020-04-11 15:57:52 763 1
原创 CS231n:Convolutional Neural Networks for Visual Recognition
文章目录1. 课程相关资料2. 官方笔记 20192.1 Module 1: Neural Networks2.2 Module 2: Convolutional Neural Networks3. 课堂笔记 20174. 扩展阅读1. 课程相关资料课程主页教学大纲Youtube原版教学视频B站教学视频腾讯云大学 AI慕课翻译原版课程笔记 2019知乎翻译笔记 2016官方大作...
2020-04-11 15:56:09 376
原创 视频分类论文阅读笔记——Learning Spatiotemporal Features With 3D Convolutional Networks
论文:Learning Spatiotemporal Features With 3D Convolutional Networks作者:来源:ICCV2015代码:文章目录1.摘要1.摘要
2020-03-30 16:18:13 554
原创 VideoQA论文阅读笔记——TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering
文章目录0 前言1.摘要引用文献总结知识0 前言论文题目作者codeCVPR2017_TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering首尔国立大学github1.摘要本篇论文主要是讲图像问答(ImageQA)引入到视频领域(VideoQA),其有三个主要贡献:为Vi...
2020-02-25 15:58:04 1999
原创 VideoQA论文阅读笔记——Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering
文章目录0. 前言1. 摘要0. 前言论文题目作者单位Heterogeneous Memory Enhanced Multimodal Attention Model for VQA京东研究院1. 摘要这篇文章主要有三个点:提出一个 层次化存储器 从 外观特征 和 运动特征 两个方面来学习 全局的上下文信息;重新设计 问题存储器 来理解问题的复杂语义信息...
2020-02-25 15:57:31 994
原创 视频问答与推理(Video Question Answering and Reasoning)——论文调研
文章目录0 前言1. ACM MM2. CVPR3. ICCV4. AAAI更新时间——2019.12 首稿0 前言入坑 VQA 的第一步——前期论文调研。 调研近几年在各大会议上的论文发表情况,来了解一下这个方向的进展,主要包括 CVPR, ICCV, ECCV,ACM MM,,AAAI。之后准备总结一下常用的数据集以及经典的方法。1. ACM MMACM MM 是计算机科学...
2020-02-25 15:56:45 2054
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人