BZOJ4596: [Shoi2016]黑暗前的幻想乡【矩阵树定理】

博客围绕4596: [Shoi2016]黑暗前的幻想乡问题展开,提到考虑用矩阵树定理,但该定理无法解决选择n - 1个公司的问题,于是采用容斥原理,即总方案数减去一个公司不选的情况,加上两个公司不选的情况等。

4596: [Shoi2016]黑暗前的幻想乡

考虑矩阵树定理,但是不能解决十分选择了n-1个公司,所以我们可以容斥,总方案数-一个公司不选+两个公司不选-…

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MOD=1e9+7;
int n,cnt[1<<17],Ans,f[20][20];
struct Edge{int x,y;};
struct xcw{
	Edge que[200];int tot;
	void read(){++tot,scanf("%d%d",&que[tot].x,&que[tot].y);}
}a[20];
int Gauss(){
	int Now=1;
	for(int i=1;i<n;i++){
		for(int j=i+1;j<n;j++)
		while(f[j][i]){
			int t=f[i][i]/f[j][i];
			for(int k=i;k<n;k++) f[i][k]=(f[i][k]-1ll*t*f[j][k]%MOD+MOD)%MOD;
			swap(f[i],f[j]),Now=-Now;
		}
		Now=1ll*Now*f[i][i]%MOD;
	}
	return (Now+MOD)%MOD;
}
void Add(int x,int y){f[x][x]++,f[x][y]--,f[y][y]++,f[y][x]--;}
void Work(int x,int opt){
	memset(f,0,sizeof(f));
	for(int i=0;i<n-1;i++)
	if((x>>i)&1) for(int j=1;j<=a[i].tot;j++) Add(a[i].que[j].x,a[i].que[j].y);
	Ans=((Ans+opt*Gauss())%MOD+MOD)%MOD;
}
int main(){
	scanf("%d",&n);
	for(int i=0;i<n-1;i++){
		int K;scanf("%d",&K);
		for(int j=1;j<=K;j++) a[i].read();
	}
	for(int i=1;i<(1<<n-1);i++) cnt[i]=cnt[i>>1]+(i&1);
	for(int i=1;i<(1<<n-1);i++) Work(i,((n-cnt[i])&1)?1:-1);
	printf("%d\n",Ans);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值