分块
XSamsara
AFO
展开
-
BZOJ 1257: [CQOI2007]余数之和【分块】
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数。 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 ...原创 2018-03-21 21:00:51 · 312 阅读 · 0 评论 -
BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊【分块】
2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec Memory Limit: 259 MB Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会...原创 2018-04-14 17:58:49 · 282 阅读 · 0 评论 -
LibreOJ 6499. 「雅礼集训 2018 Day2」颜色【分块+bitset+ST表+卡常】
6499. 「雅礼集训 2018 Day2」颜色 【题目描述】 传送门 【题解】 分块+bitset+ST表+卡常 对于序列分块,每块用bitset存起来,然后用ST表预处理bitset的合并,然后就是一道卡常题了。 代码如下 #include<cmath> #include<cstdio> #include<cstring> #include<algor...原创 2019-02-17 16:34:27 · 570 阅读 · 0 评论 -
BZOJ5087: polycomp【bitset+分块】
5087: polycomp 【题目描述】 传送门 【题解】 首先, 注意到对于这里的mod 2的多项式的乘法, 我们很容易给出一个 使用bitset的压位的算法. 这样就能把复杂度给除掉一个32. 然而n3/32n^3/32n3/32还是比较大. 注意到对于f(g(x))f(g(x))f(g(x)), 我们可以将它每10项每10项分别计算. 预处理一下2102^{10}210 关于g(x)g(x...原创 2019-03-11 07:25:16 · 163 阅读 · 0 评论 -
BZOJ3809: Gty的二逼妹子序列【分块】
3809: Gty的二逼妹子序列 很容易想到,莫队,然后用树状数组维护,发现复杂度是O(nnlogn)O(n \sqrt{n} logn)O(nnlogn)的。 我们考虑如何平衡复杂度 用分块代替树状数组,这样询问复杂度O(n)O(\sqrt{n})O(n),修改复杂度O(1)O(1)O(1),总复杂度O(qn)O(q\sqrt{n})O(qn) #include<cmath> ...原创 2019-08-24 21:05:04 · 157 阅读 · 0 评论