数论-整除

点个关注吧,谢谢!
后面将继续更新数论基础,如果内容有问题,请私信我。

定义:
a , b ∈ Z a,b\in \mathbb{Z} a,bZ,如果存在整数 c ∈ Z c \in \mathbb{Z} cZ,使得 b = a c b=ac b=ac,那么说 a a a整除 b b b或者 b b b a a a整除; a a a b b b的因数或者 b b b a a a的倍数。常用符号 a ∣ b a|b ab表示。

示例:
− 5 ∣ 15 : 15 = 3 ∗ ( − 5 ) -5|15: 15=3*(-5) 5∣15:15=3(5)
3 ∣ 6 : 6 = 2 ∗ 3 3|6:6=2*3 3∣6:6=23

性质及证明
1. 如果 a ∣ b a|b ab b ∣ c b|c bc,那么 a ∣ c a|c ac

证: a ∣ b a|b ab可知 b = r a b=ra b=ra b ∣ c b|c bc可知 c = k b c=kb c=kb → \rightarrow c = r k a c=rka c=rka
所以 a ∣ c a|c ac

2. m ≠ 0 , a ∣ b m\ne 0,a|b m=0ab,那么 m a ∣ m b ma|mb mamb
证: a ∣ b a|b ab可知 b = r a b=ra b=ra。因 m ≠ 0 m\ne 0 m=0,所以 m b = r ( m a ) mb=r(ma) mb=r(ma)

3. a ∣ b , b ∣ a a|b,b|a ab,ba,那么 a = ± b a=\pm b a=±b
证: a ∣ b a|b ab可知 b = r a b=ra b=ra, b ∣ a b|a ba可知 a = k b a=kb a=kb,所以 b = r k b b=rkb b=rkb,所以 r k = 1 rk=1 rk=1,因为 r , k r,k r,k均为整数,所以 r = ± 1 r=\pm 1 r=±1, 所以 a = ± b a=\pm b a=±b

4. a ∣ b , c ∣ d a|b,c|d ab,cd,那么 a c ∣ b d ac|bd acbd
证: a ∣ b a|b ab可知 b = r a b=ra b=ra c ∣ d c|d cd可知 d = k c d=kc d=kc.所以 b d = r k ( a c ) bd=rk(ac) bd=rk(ac),所以 a c ∣ b d ac|bd acbd.

5. 设 a ∣ b a|b ab b ∣ c b|c bc,当且仅当 ∀ x , y ∈ Z \forall x,y \in \mathbb{Z} x,yZ,有 a ∣ b x + c y a|bx+cy abx+cy
证:必要性: a ∣ b a|b ab可知 b = r a b=ra b=ra b ∣ c b|c bc可知 c = k b c=kb c=kb。所以 b x + c y = ( r a + k y ) a bx+cy=(ra+ky)a bx+cy=(ra+ky)a,所以 a ∣ b x + c y a|bx+cy abx+cy
充分性:因为 ∀ x , y ∈ Z \forall x,y \in \mathbb{Z} x,yZ,有 a ∣ b x + c y a|bx+cy abx+cy,所以取 x = 1 , y = 0 x=1,y=0 x=1,y=0,有 a ∣ b a|b ab x = 0 , y = 1 x=0,y=1 x=0,y=1,有 a ∣ c a|c ac

6. a ∣ b 1 , a ∣ b 2 , . . . a ∣ b n a|b_1,a|b_2,...a|b_n ab1,ab2,...abn,则有 a ∣ b 1 x 1 + . . . + b n x n a|b_1x_1+...+b_nx_n ab1x1+...+bnxn
证: b i = r i a b_i=r_ia bi=ria,则有 b i x i = ( r i x i ) a b_ix_i=(r_ix_i)a bixi=(rixi)a。那么 ∑ b i x i = [ ∑ ( r i x i ) ] a \sum b_ix_i= [\sum(r_ix_i)]a bixi=[(rixi)]a,则有 a ∣ ∑ b i x i a|\sum b_ix_i abixi

7.若 2 ∣ a b 2|ab 2∣ab,那么有 2 ∣ a 2|a 2∣a 2 ∣ b 2|b 2∣b
证:不妨设 2 ∤ a 2\nmid a 2a,所以有 a = 2 k + 1 ( 奇数 ) a=2k+1(奇数) a=2k+1(奇数) a b = ( 2 k + 1 ) b ab=(2k+1)b ab=(2k+1)b。因为 2 ∣ a b 2|ab 2∣ab,所以 2 ∣ ( 2 k + 1 ) b → 2 ∣ ( 2 k b + b ) 2|(2k+1)b\rightarrow 2|(2kb+b) 2∣(2k+1)b2∣(2kb+b),所以 2 ∣ b 2|b 2∣b

最后一步显而易见: a ∣ b , a ∣ ( b + c ) → a ∣ c a|b,a|(b+c) \rightarrow a|c ab,a(b+c)ac
证: b + c = r a , b = k a → c = ( r − k ) a → a ∣ c b+c=ra,b=ka\rightarrow c=(r-k)a\rightarrow a|c b+c=ra,b=kac=(rk)aac

  • 26
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅逼码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值