数论4-公倍数,最小公倍数

点个关注吧,谢谢!

定义:对于 a , b , c ∈ Z a,b,c \in \mathbb{Z} a,b,cZ, a ∣ c , b ∣ c a|c,b|c ac,bc,那么 c c c a , b a,b a,b的公倍数。
同理,对于 a 1 , . . . , a n , c ∈ Z a_1,...,a_n,c \in \mathbb{Z} a1,...,an,cZ, a 1 ∣ c , . . . , a n ∣ c a_1|c,...,a_n|c a1c,...,anc,那么 c c c a 1 , . . . , a n a_1,...,a_n a1,...,an的公倍数。

最小公倍数: a , b a,b a,b为不全为0的整数,其公倍数中最小的正整数成为 a , b a,b a,b的最小公倍数。
记为 l c m ( a , b ) lcm(a,b) lcm(a,b).

示例:

2 , 5 2,5 2,5最小公倍数为 10 10 10
4 , 8 4,8 4,8最小公倍数为 8 8 8

性质:

1.设 a , b , c ∈ Z a,b,c \in \mathbb{Z} a,b,cZ, a ∣ c , b ∣ c a|c,b|c ac,bc,那么 l c m ( a , b ) ∣ c lcm(a,b)|c lcm(a,b)c
证:设 c = q l c m ( a , b ) + r , 0 ≤ r < l c m ( a , b ) c=qlcm(a,b)+r,0\le r<lcm(a,b) c=qlcm(a,b)+r,0r<lcm(a,b),现在需要证 r = 0 r=0 r=0
r = c − q l c m ( a , b ) r=c-qlcm(a,b) r=cqlcm(a,b).因为 a ∣ c , a ∣ l c m ( a , b ) a|c,a|lcm(a,b) ac,alcm(a,b),所以 a ∣ r a|r ar。同理 b ∣ c , b ∣ l c m ( a , b ) b|c,b|lcm(a,b) bc,blcm(a,b),所以 b ∣ r b|r br
由最小公倍数最小性可知 r = 0 r=0 r=0,否则 l c m ( a , b ) ′ = l c m ( a , b ) + r > l c m ( a , b ) lcm(a,b)'=lcm(a,b)+r>lcm(a,b) lcm(a,b)=lcm(a,b)+r>lcm(a,b)。所以 l c m ( a , b ) ∣ c lcm(a,b)|c lcm(a,b)c

2.若 a , b a,b a,b互素,那么 l c m ( a , b ) = a b lcm(a,b)=ab lcm(a,b)=ab
证:设 m m m a , b a,b a,b任意公倍数,那么有 a ∣ m , b ∣ m a|m,b|m am,bm。所以存在 m = a k → b ∣ a k m=ak\rightarrow b|ak m=akbak。因为 a , b a,b a,b互素,所以 b ∣ k b|k bk(见下章证明)。所以有 k = b t → m = a b t k=bt\rightarrow m=abt k=btm=abt.所以 a b ∣ m ab|m abm。取最小的倍数,则有 l c m ( a , b ) = a b lcm(a,b)=ab lcm(a,b)=ab

3. l c m ( a , b ) = a b g c d ( a , b ) lcm(a,b)=\frac{ab}{gcd(a,b)} lcm(a,b)=gcd(a,b)ab
证: a = r ⋅ g c d ( a , b ) , b = k ⋅ g c d ( a , d ) a=r\cdot gcd(a,b),b=k\cdot gcd(a,d) a=rgcd(a,b),b=kgcd(a,d),易知 g c d ( r , k ) = 1 gcd(r,k)=1 gcd(r,k)=1。设 m m m为任意公倍数,则有 a ∣ m , b ∣ m a|m,b|m am,bm,则有 m = q a a = q b b → m = q q r ⋅ g c d ( a , b ) = q b k ⋅ g c d ( a , d ) → q a r = q b k → r ∣ q b (这一步证明和性质 2 留下的问题一样) → r b ∣ q b b m=q_aa=q_bb\rightarrow m=q_qr\cdot gcd(a,b)=q_bk\cdot gcd(a,d)\rightarrow q_ar=q_bk\rightarrow r|q_b(这一步证明和性质2留下的问题一样)\rightarrow rb|q_bb m=qaa=qbbm=qqrgcd(a,b)=qbkgcd(a,d)qar=qbkrqb(这一步证明和性质2留下的问题一样)rbqbb,那么 g c d ( a , b ) r b g c d ( a b ) ∣ q b b = m → a b g c d ( a , b ) ∣ m \frac{gcd(a,b)rb}{gcd(ab)}|q_bb=m\rightarrow \frac{ab}{gcd(a,b)}|m gcd(ab)gcd(a,b)rbqbb=mgcd(a,b)abm.因为 a b g c d ( a , b ) \frac{ab}{gcd(a,b)} gcd(a,b)ab整除 a , b a,b a,b任意的公倍数,所以 a b g c d ( a , b ) \frac{ab}{gcd(a,b)} gcd(a,b)ab a , b a,b a,b最小公倍数。

  • 20
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅逼码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值