一、定义
一个元素个数有限的域称为有限域或者伽罗瓦域
有限域中元素个数为素数,记为
G
F
(
p
)
GF(p)
GF(p)。
有限域中的元素运算满足交换律,结合律和分配律。
特征:存在某个正整数
m
m
m,使得对任意域中元素
a
a
a,
m
a
=
0
ma=0
ma=0,则称特征为
m
m
m,
C
h
a
r
F
=
m
Char F=m
CharF=m。
讨论每个元素非常麻烦,幸运的是我们只需要关注单位元。如果能使单位元称为0,那么该正整数就是特征。
有限域的特征一定是素数
证:
-
假设 ( p ) 不是素数:如果 p p p不是素数,那么 p p p可以表示为两个正整数 p = a ⋅ b p = a \cdot b p=a⋅b,其中 1 < a , b < p 1 < a, b < p 1<a,b<p。
-
考虑 a ⋅ b ⋅ 1 a \cdot b \cdot 1 a⋅b⋅1:由于 p ⋅ 1 = 0 p \cdot 1 = 0 p⋅1=0(1为乘法单位元,特征的性质),我们有 a ⋅ b ⋅ 1 = 0 a \cdot b \cdot 1 = 0 a⋅b⋅1=0。
-
域的性质:在域中,乘法是结合的,所以 a ⋅ ( b ⋅ 1 ) = 0 a \cdot (b \cdot 1) = 0 a⋅(b⋅1)=0。由于 b ⋅ 1 b \cdot 1 b⋅1是域中的元素,且 b ≠ p b \neq p b=p,所以 b ⋅ 1 ≠ 0 b \cdot 1 \neq 0 b⋅1=0。
-
矛盾:因此,我们得到 a ⋅ ( b ⋅ 1 ) = 0 a \cdot (b \cdot 1) = 0 a⋅(b⋅1)=0,其中 a ≠ 0 a \neq 0 a=0且 b ⋅ 1 ≠ 0 b \cdot 1 \neq 0 b⋅1=0。这与域的性质矛盾,因为在域中,两个非零元素的乘积不能为零(域无零因子)。
素域:不包含任何真子域的域(其任何真子集都不能构成域)。
定理:阶为素数
p
p
p的有限域必然是素域,特征为这个素数
p
p
p。
证:设
K
K
K是
F
F
F的子域,那么
K
K
K的加法群是
F
F
F加法群的子群,那么
∣
K
∣
∣
∣
F
∣
|K| ~|~|F|
∣K∣ ∣ ∣F∣,
∣
F
∣
|F|
∣F∣是素数,因此
∣
K
∣
=
∣
F
∣
|K|=|F|
∣K∣=∣F∣
因为有限域特征为素数,假设
F
F
F特征为
p
′
p'
p′。那么
K
=
{
e
,
2
e
,
.
.
.
,
p
′
e
}
K=\{e,2e,...,p'e\}
K={e,2e,...,p′e}互不相等。封闭性知
K
⊂
F
K\subset F
K⊂F,所以
p
′
<
p
p'<p
p′<p。
K
K
K是
F
F
F真子域。矛盾。
定理:特征为素数
p
p
p的域
F
F
F的素子域同构于
Z
p
Z_p
Zp
证:设
P
P
P是
F
F
F的子域,那么
0
,
1
∈
P
0,1\in P
0,1∈P。
F
F
F的特征为
p
p
p,因为
0
,
1
∈
P
0,1\in P
0,1∈P,所以有
{
m
⋅
1
∣
m
∈
Z
}
⊂
P
\{m\cdot 1|m\in Z\}\subset P
{m⋅1∣m∈Z}⊂P。构造映射
ϕ
:
Z
→
P
:
m
→
m
⋅
1
\phi:Z \rightarrow P: m\rightarrow m\cdot 1
ϕ:Z→P:m→m⋅1。
ϕ
\phi
ϕ是环同态映射,
k
e
r
ϕ
=
<
p
>
ker\phi=<p>
kerϕ=<p>。所以
Z
p
=
Z
/
k
e
r
ϕ
Z_p=Z/ker\phi
Zp=Z/kerϕ同构于
ϕ
(
Z
)
⊂
P
\phi(Z)\subset P
ϕ(Z)⊂P.因为
Z
p
Z_p
Zp是域,
P
P
P是素域,所以两者同构。
代数元:设 K K K是 F F F的子域, a ∈ F a\in F a∈F,如果 a a a是 K K K上某个非零多项式的根,则称 a a a是 K K K上的代数元。如果 K K K上的一个扩张的所有元素均为 K K K上的代数元,那么称之为代数扩张。
设 K K K是 F F F的子域, a ∈ F a\in F a∈F,如果 a a a是 K K K上一个代数元,则 K [ x ] K[x] K[x]中满足 f ( a ) = 0 f(a)=0 f(a)=0的次数最小的多项式称之为 a a a在 K K K上的极小多项式,该多项式次数称之为代数元次数。极小多项式一定是不可约多项式。
设
K
K
K是
F
F
F的子域,
∣
K
∣
=
q
|K|=q
∣K∣=q,
[
F
:
K
]
=
n
[F:K]=n
[F:K]=n,则
∣
F
∣
=
q
n
|F|=q^n
∣F∣=qn。
证:
F
F
F看作向量空间,
K
K
K看作基域,
F
F
F的基为
b
1
,
.
.
.
b
n
b_1,...b_n
b1,...bn。
F
F
F中的元素均可以表示为
a
1
b
1
+
.
.
.
+
a
n
b
n
,
a
i
∈
K
a_1b_1+...+a_nb_n,a_i\in K
a1b1+...+anbn,ai∈K。因为
∣
K
∣
=
q
|K|=q
∣K∣=q,所以一共有
q
n
q^n
qn中线性表示。
∣
F
∣
=
q
n
|F|=q^n
∣F∣=qn
任何有限域的阶必然是
p
n
p^n
pn形式的整数
证:
-
素域:任何有限域 F F F都包含一个素子域 G F ( p ) GF(p) GF(p),其中 p p p是 F F F的特征。素域 G F ( p ) GF(p) GF(p) 是包含 p p p个元素的域,它的元素是 { 0 , 1 , 2 , … , p − 1 } \{0, 1, 2, \ldots, p-1\} {0,1,2,…,p−1}。
-
扩张次数:有限域 F F F可以看作是素域 G F ( p ) GF(p) GF(p)的一个扩张。设 [ F : G F ( p ) ] = n [F:GF(p)] = n [F:GF(p)]=n,这意味着 F F F 可以看作是 G F ( p ) GF(p) GF(p)上的 n n n 维向量空间。
-
元素个数:由于 F F F是 G F ( p ) GF(p) GF(p) 上的 n n n 维向量空间, F F F 中的任何元素都可以唯一地表示为 G F ( p ) GF(p) GF(p) 中元素的线性组合。因此, F F F 中的元素个数是 p n p^n pn。
-
结论:因此,任何有限域的阶必然是 p n p^n pn 形式的整数。
具有相同元素个数的有限域都是同构的,因此阶为 p p p的有限域统一用 G F ( p ) GF(p) GF(p)表示。
举例:
F
9
F_9
F9可以看作
F
3
F_3
F3通过添加一个二次不可约多项式的根
a
a
a得到的代数扩张。极小多项式为
f
(
x
)
=
x
2
+
1
f(x)=x^2+1
f(x)=x2+1是
F
3
F_3
F3上的不可约多项式。设
a
a
a为其在
F
9
F_9
F9的根,即
a
2
+
1
=
0
a^2+1=0
a2+1=0。则
1
,
a
1,a
1,a是
F
9
F_9
F9在
F
3
F_3
F3的一组基,从而通过代数扩张得到
F
9
=
{
0
,
1
,
2
,
a
,
1
+
a
,
2
+
a
,
2
a
,
1
+
2
a
,
2
+
2
a
}
F_9=\{0,1,2,a,1+a,2+a,2a,1+2a,2+2a\}
F9={0,1,2,a,1+a,2+a,2a,1+2a,2+2a}。
从上面已知任何有限域的阶必然是 p n p^n pn形式的整数,那么对任意素数 p p p,任意正整数 n n n,是否存在阶位 p n p^n pn的有限域呢?答案是肯定的!
设 F F F的阶为 q q q, K K K是 F F F的子域, ∀ a ∈ F \forall a\in F ∀a∈F:
- a q = a a^q=a aq=a
- x q − x ∈ K [ x ] x^q-x\in K[x] xq−x∈K[x]在 K K K上的分裂域为 F F F,且 x q − x = ∏ a ∈ F ( x − a ) x^q-x=\prod_{a\in F}(x-a) xq−x=∏a∈F(x−a)
证:
- a a a为零元,显然成立。 a a a不为零元, F F F中的非零元构成乘法阿贝尔群,阶位 q − 1 q-1 q−1, a q − 1 = e a^{q-1}=e aq−1=e,所以 a q = a a^q=a aq=a。
- 由1知, F F F的元素与多项式的根一一对应。 F F F的元素都是 x q − x x^q-x xq−x的根。所以 x q − x = ∏ a ∈ F ( x − a ) x^q-x=\prod_{a\in F}(x-a) xq−x=∏a∈F(x−a)。所以 x q − x x^q-x xq−x在 F F F里分裂, K K K上的分裂域为 F F F。
对于任意的素数
p
p
p,任意正整数
n
n
n,都存在阶为
p
n
p^n
pn的有限域。任何阶为
p
n
p^n
pn的有限域同构于
x
p
n
−
x
x^{p^n}-x
xpn−x在
Z
p
Z_p
Zp的分裂域。
证:设
F
F
F是
x
q
−
x
x^q-x
xq−x在
Z
p
Z_p
Zp的分裂域(
q
=
p
n
q=p^n
q=pn)。该多项式(模p)导数为1.因此该多项式在
F
F
F有
q
q
q个不同的根。
设
S
=
{
a
∈
F
∣
a
q
−
a
=
0
}
S=\{a\in F|a^q-a=0\}
S={a∈F∣aq−a=0},可以证明
S
S
S是
F
F
F的子域。又因为
f
(
x
)
f(x)
f(x)在
S
S
S中可以分解成一次因式的乘积,
S
S
S是在
Z
p
Z_p
Zp的分裂域。
f
(
x
)
f(x)
f(x)在
Z
p
Z_p
Zp任意两个分裂域同构。则
S
=
F
S=F
S=F,
∣
S
∣
=
q
|S|=q
∣S∣=q,所以
∣
F
∣
=
q
|F|=q
∣F∣=q。
∣
F
∣
=
p
n
|F|=p^n
∣F∣=pn,
F
F
F特征为
p
p
p,所以包含同构于
Z
p
Z_p
Zp的素子域。所以
Z
p
[
x
]
Z_p[x]
Zp[x]上
x
p
n
−
x
x^{p^n}-x
xpn−x的分裂域为
F
F
F。分裂域唯一,所以任何阶为
p
n
p^n
pn的有限域同构于
x
p
n
−
x
x^{p^n}-x
xpn−x在
Z
p
Z_p
Zp的分裂域。
举例:
好的,让我们通过一个具体的例子来说明分裂域的概念。
例子:分裂域的构造
假设我们有一个多项式 f ( x ) = x 2 − 2 f(x) = x^2 - 2 f(x)=x2−2,我们想要找到这个多项式在有理数域 Q \mathbb{Q} Q 上的分裂域。
-
确定多项式的根:
- 多项式 f ( x ) = x 2 − 2 f(x) = x^2 - 2 f(x)=x2−2的根是 2 \sqrt{2} 2和 − 2 -\sqrt{2} −2。
- 这两个根都不是有理数,因此它们不在 Q \mathbb{Q} Q 中。
-
构造分裂域:
- 为了构造 f ( x ) f(x) f(x) 在 Q \mathbb{Q} Q 上的分裂域,我们需要包含这两个根。
- 考虑域扩张 Q ( 2 ) \mathbb{Q}(\sqrt{2}) Q(2),这是包含 2 \sqrt{2} 2 的最小域。
- 由于 − 2 -\sqrt{2} −2可以通过乘以 − 1 -1 −1从 2 \sqrt{2} 2 得到,而 − 1 -1 −1已经在 Q \mathbb{Q} Q中,所以 − 2 -\sqrt{2} −2 也在 Q ( 2 ) \mathbb{Q}(\sqrt{2}) Q(2) 中。
-
验证分裂域:
- 在 Q ( 2 ) \mathbb{Q}(\sqrt{2}) Q(2) 中,多项式 f ( x ) f(x) f(x)可以分解为 ( x − 2 ) ( x + 2 ) (x - \sqrt{2})(x + \sqrt{2}) (x−2)(x+2)。
- 因此, Q ( 2 ) \mathbb{Q}(\sqrt{2}) Q(2) 是包含 f ( x ) f(x) f(x)所有根的最小域扩张。
-
结论:
- 多项式
f
(
x
)
=
x
2
−
2
f(x) = x^2 - 2
f(x)=x2−2在
Q
\mathbb{Q}
Q 上的分裂域是
Q
(
2
)
\mathbb{Q}(\sqrt{2})
Q(2)。
域 Q ( 2 ) \mathbb{Q}(\sqrt{2}) Q(2)包含所有可以表示为 a + b 2 a + b\sqrt{2} a+b2形式的数,其中 a a a和 b b b是有理数。
- 多项式
f
(
x
)
=
x
2
−
2
f(x) = x^2 - 2
f(x)=x2−2在
Q
\mathbb{Q}
Q 上的分裂域是
Q
(
2
)
\mathbb{Q}(\sqrt{2})
Q(2)。
因此具有相同个数的有限域是同构的。