【SparkCore】 RDD介绍

  • 介绍

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。

 

单词拆解

Resilient :它是弹性的,RDD中的数据可以保存在内存中或者磁盘里面

Distributed :它里面的元素是分布式存储的,可以用于分布式计算

Dataset: 它是一个集合,可以存放很多元素

 

 

  • RDD的主要属性

A list of partitions :

一组分片(Partition)/一个分区(Partition)列表,即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,分片数决定并行度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值(2)。

 

A function for computing each split :

一个函数会被作用在每一个分区。Spark中RDD的计算是以分区为单位的,compute函数会被作用到每个分区上

 

A list of dependencies on other RDDs:

一个RDD会依赖于其他多个RDD。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。(Spark的容错机制)

 

Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned):

Spark中的分区函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。对于KV类型的RDD会有一个Partitioner函数,即RDD的分区函数(可选项)只有对于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数决定了RDD本身的分区数量,也决定了parent RDD Shuffle输出时的分区数量。

 

Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):

一个列表,存储每个Partition的位置(preferred location),对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照"移动数据不如移动计算"的理念,Spark在进行任务调度的时候,会尽可能选择那些存有数据的worker节点来进行任务计算。

 

总结:

RDD 是一个数据集,不仅表示了数据集,还表示了这个数据集从哪来,如何计算。主要属性包括

1.多分区

2.计算函数

3.依赖关系

4.分区函数(默认是hash)

5.最佳位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值