【spark】表结构

本文介绍了在Spark中提升数据帧(DataFrame)构造速度的方法——预先定义表结构。详细阐述了通过编程方式和数据定义语言(DDL)定义表结构的两种方法,并给出了Python实现静态数据生成及表结构定义的示例。
摘要由CSDN通过智能技术生成

提前定义表结构,可以提升构造df的速度

定义表结构的两种方式

1,编程的方式

// Scala代码
import org.apache.spark.sql.types._
val schema = StructType(Array(StructField("author", StringType(), false),
StructField("title",StringType(),false),
StructField("pages",IntegerType(),false)))
# python代码
from pyspark.sql.types import *
schema = StructType([StructField("auther", StringType(), False)]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值