leetcode64
题目描述:
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
答案:
①定义dp[i][j]为(i,j)处的最小路径和。
定义一个m行n列的二维数组,由于数组从索引0值开始,故m行n列处的最小路径和为dp[m-1][n-1]。
②初始值为第一行和第一列的dp值。
③有两个坐标可以走到m,n处,取路径和较小的一个。
等价关系为dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j]。
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int hang = grid.size(); //二维数组的行数
int lie = grid[0].size(); //二维数组的列数
//dp[i][j]为(i,j)处的最小路径和
int dp[hang][lie];
//初始值
dp[0][0] = grid[0][0];
//数组第一行
for(int i = 1;i < lie;++i)
{
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
//数组第一列
for(int i = 1;i < hang;++i)
{
dp[i][0] = dp[i-1][0] + grid[i][0];
}
//求dp[hang - 1][lie -1]
for(int i = 1;i < hang;++i)
{
for(int j = 1;j < lie;++j)
{
dp[i