动态规划

本文探讨了动态规划在解决LeetCode题目中的应用,包括最短路径问题、字符串编辑距离、连续子数组最大和、股票交易利润最大化以及寻找丑数等问题。通过实例分析,阐述了动态规划的基本思想、状态转移方程以及优化技巧,旨在帮助读者理解和掌握动态规划方法。
摘要由CSDN通过智能技术生成

leetcode64
题目描述:

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

答案:
①定义dp[i][j]为(i,j)处的最小路径和。
定义一个m行n列的二维数组,由于数组从索引0值开始,故m行n列处的最小路径和为dp[m-1][n-1]。
②初始值为第一行和第一列的dp值。
③有两个坐标可以走到m,n处,取路径和较小的一个。
等价关系为dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + arr[i][j]。

class Solution {
   
public:
    int minPathSum(vector<vector<int>>& grid) {
   

        int hang = grid.size(); //二维数组的行数
        int lie = grid[0].size(); //二维数组的列数

        //dp[i][j]为(i,j)处的最小路径和
        int dp[hang][lie];

        //初始值
        dp[0][0] = grid[0][0];

        //数组第一行
        for(int i = 1;i < lie;++i)
        {
   
            dp[0][i] = dp[0][i - 1] + grid[0][i]; 
        }
        //数组第一列
        for(int i = 1;i < hang;++i)
        {
   
            dp[i][0] = dp[i-1][0] + grid[i][0]; 
        }

        //求dp[hang - 1][lie -1]
        for(int i = 1;i < hang;++i)
        {
   
            for(int j = 1;j < lie;++j)
            {
   
                dp[i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值