有一棵由N个结点构成的树,每一条边上都有其对应的权值。现在给定起点,求从该点出发的一条路径(至少有一条边)使得这条路径上的权值之和最大,并输出这个最大值。
Input
第一行一个正整数T,代表数据组数。每组数据第一行两个正整数n(2<=n<=10^5),s(1<=s<=n),分别表示树结点数目以及给定的起点,点的编号从1至N。接下来M行,每行三个整数x,y,z,(1<=x,y<=n,|z|<=1000),代表编号为x和y的点之间有一条权值为z的双向边。
Output
每组数据输出一行,即所找到路径的最大权值(格式参见样例)。
Sample Input
2 3 1 1 2 10 1 3 5 5 5 1 5 70 4 3 100 5 3 -10 2 5 60
Sample Output
Case #1: 10 Case #2: 90
Hint
#include<bits/stdc++.h>
using namespace std;
struct st
{
int v,w;
};
vector<st>u[100005];
int Max,sum;
int vis[100005];
void dfs(int s,int num)
{
int i;
Max=max(Max,num);
vis[s]=1;
for(i=0; i<u[s].size(); i++)
{
if(!vis[u[s][i].v])
{
dfs(u[s][i].v,num+u[s][i].w);
}
}
}
int main()
{int t,i,x,y,z,n,s;
scanf("%d",&t);
int ca=1;
while(t--)
{
memset(vis,0,sizeof(vis));
memset(u,0,sizeof(u));
Max=-0x3f3f3f3f3f;
sum=0;
scanf("%d%d",&n,&s);
for(i=0;i<n-1;i++)
{
scanf("%d%d%d",&x,&y,&z);
st xx;
xx.v=y;
xx.w=z;
u[x].push_back(xx);
xx.v=x;
xx.w=z;
u[y].push_back(xx);
}
dfs(s,0);
printf("Case #%d: ",ca++);
printf("%d\n",Max);
}
return 0;
}