import matplotlib

这篇博客介绍了使用matplotlib库进行数据可视化的多种图表类型,包括散点图、折线图、条形图、直方图、饼状图和箱型图。散点图用于展示两个变量之间的相关性,折线图常用来描绘随时间变化的趋势,条形图则用于比较不同分类的数据大小。直方图展示了数据的分布情况,饼状图显示各项占比,而箱型图则用于揭示数据的四分位数和异常值。
摘要由CSDN通过智能技术生成

目录

散点图:用于描述两个变量的相关性-----scatter

折线图:多用于描述变量随时间的变化-----plot

条形图:比较多个项目分类的数据大小

直方图:表示数据的分布情况(连续)

饼状图:显示各项大小与总和的比例

箱型图:上边缘,上四分位数,中位数,下四分位数,下边缘,异常值



 

散点图:用于描述两个变量的相关性-----scatter

scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None,vmin=None, vmax=None,alpha=None, linewidths=None, verts=None,edgecolors=None, *, data=None, **kwargs)
import numpy as np
import matplotlib.pyplot as plt

#随机正相关
m=np.random.randn(1000)
n=m+np.random.randn(1000)*0.5
plt.scatter(m,n)
plt.show()

 

import numpy as np
import matplotlib.pyplot as plt

#随机不相关
x=np.random.randn(1000)
y=np.random.randn(1000)

plt.scatter(x,y)
plt.show()

界面定制:  

#s:点的面积
#c:颜色
#marker:标志形状
#alpha:透明度

plt.scatter(x,y,s=100,c='r',marker='X',alpha=0.5)

#marker的种类:https://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers
 

 

折线图:多用于描述变量随时间的变化-----plot

def plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, *,data=None, **kwargs)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值