目录
箱型图:上边缘,上四分位数,中位数,下四分位数,下边缘,异常值
散点图:用于描述两个变量的相关性-----scatter
scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None,vmin=None, vmax=None,alpha=None, linewidths=None, verts=None,edgecolors=None, *, data=None, **kwargs)
import numpy as np
import matplotlib.pyplot as plt
#随机正相关
m=np.random.randn(1000)
n=m+np.random.randn(1000)*0.5
plt.scatter(m,n)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
#随机不相关
x=np.random.randn(1000)
y=np.random.randn(1000)
plt.scatter(x,y)
plt.show()
界面定制:
#s:点的面积
#c:颜色
#marker:标志形状
#alpha:透明度
plt.scatter(x,y,s=100,c='r',marker='X',alpha=0.5)
#marker的种类:https://matplotlib.org/api/markers_api.html?highlight=marker#module-matplotlib.markers
折线图:多用于描述变量随时间的变化-----plot
def plot_date(x, y, fmt='o', tz=None, xdate=True, ydate=False, *,data=None, **kwargs)