团体程序设计天梯赛 L2-029 特立独行的幸福 (25分)

题目链接:

L2-029 特立独行的幸福 (25分)

今天除夕夜,Yuhan在这里给大家拜个(早)年~
祝大家新年快乐,在新的一年里有[特立独行的幸福]~
(^ω^)

思路:

我们可以在 O ( n ) O(\sqrt{n}) O(n )的时间内判断一个数是否为素数;
其次迭代计算下一个平方和时需要计算这个数之前是否出现过,以保证不会进入死循环,同时也判断该数是不是一个幸福数;
在处理区间所有数的过程中,我们应该记录依赖于每个数的数,这些数就不是特立独行的;
最后将符合条件的数输出即可~

代码:

#include<bits/stdc++.h>

using namespace std;

inline bool isPrime(int & x) {
	for(int i = 2; i * i <= x; i++) {
		if(x % i == 0) return false;
	}
	return x > 1;
}
inline int nxt(int x) {
	int ans = 0;
	while(x) ans += (x % 10) * (x % 10), x /= 10;
	return ans;
}
bool flag, spec[10005];
inline int get(int x) {
	map<int, bool> vst;
	int ans = 0, mul = isPrime(x) ? 2 : 1;
	for(; x != 1; ++ans) {
		if(vst[x] == true) return 0;
		vst[x] = true;
		spec[x = nxt(x)] = false;
	}
	return ans * mul;
}
typedef pair<int, int> P;
int main() {
#ifdef MyTest
	freopen("Sakura.txt", "r", stdin);
#endif
	int a, b;
	cin >> a >> b;
	vector<P> res;
	for(int i = a; i <= b; i++) spec[i] = true;
	for(int i = a; i <= b; i++) res.push_back(P{i, get(i)});
	for(P & p : res) if(p.second && spec[p.first]) {
		cout << p.first << ' ' << p.second << '\n';
		flag = true;
	}
	if(!flag) cout << "SAD";
	return 0;
}
这道题目是一道算法题,需要我们设计一个算法来解决问题。具体来说,我们需要找到一种方法,使得在一个给定的序列中,能够找到一个子序列,使得该子序列中的所有元素都是不同的,并且该子序列的长度最长。 这个问题可以使用贪心算法来解决。具体来说,我们可以从序列的第一个元素开始,依次向后遍历每个元素。对于每个元素,我们可以将其加入到当前的子序列中,如果该元素已经在子序列中出现过了,那么我们就需要将子序列中该元素之前的所有元素都删除,然后再将该元素加入到子序列中。这样,我们就可以保证子序列中的所有元素都是不同的,并且该子序列的长度最长。 具体的实现过程可以参考以下代码: ```python n = int(input()) a = list(map(int, input().split())) s = set() ans = j = for i in range(n): while a[i] in s: s.remove(a[j]) j += 1 s.add(a[i]) ans = max(ans, len(s)) print(ans) ``` 在这段代码中,我们使用了一个集合 `s` 来保存当前的子序列。对于每个元素 `a[i]`,我们首先判断它是否已经在集合中出现过了,如果是的话,就需要将集合中该元素之前的所有元素都删除,然后再将该元素加入到集合中。最后,我们更新答案 `ans`,使其等于当前子序列的长度和之前的答案中的较大值。 这样,我们就可以通过贪心算法来解决这个问题了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值