位运算也是各大互联网公司面试经常会问的一类问题。
计算机中的数在内存中都是以二进制形式进行存储的,用位运算就是直接对整数在内存中的二进制位进行操作,因此其执行效率非常高,在程序中尽量使用位运算进行操作,这会大大提高程序的性能。
位操作符
& 与运算
两个位都是 1 时,结果才为 1,否则为 0
1 0 0 1 1
& 1 1 0 0 1
1 0 0 0 1
| 或运算
两个位都是 0 时,结果才为 0,否则为 1
1 0 0 1 1
| 1 1 0 0 1
1 1 0 1 1
^ 异或运算
两个位相同则为 0,不同则为 1
1 0 0 1 1
| 1 1 0 0 1
0 1 0 1 0
~ 取反运算
0 则变为 1,1 则变为 0
1 0 0 1 1
~
0 1 1 0 0
<< 左移运算
向左进行移位操作,高位丢弃,低位补 0
int a = 8; a<<3;
移位前:0000 0000 0000 0000 0000 0000 0000 1000
移位后:0000 0000 0000 0000 0000 0000 0100 0000
“>>” 右移运算
向右进行移位操作,对无符号数,高位补 0,对于有符号数,高位补符号位
如
unsigned int a = 8; a >> 3;
移位前:0000 0000 0000 0000 0000 0000 0000 1000
移位后:0000 0000 0000 0000 0000 0000 0000 0001
int a = -8; a >> 3;
移位前:1111 1111 1111 1111 1111 1111 1111 1000
移位前:1111 1111 1111 1111 1111 1111 1111 1111
码
原码
最高位为符号位,0代表正数,1代表负数,非符号位为该数字绝对值的二进制表示。
如:
127的原码为0111 1111
-127的原码为1111 1111
反码
正数的反码与原码一致;
负数的反码是对原码按位取反,只是最高位(符号位)不变。
如:
127的反码为0111 1111
-127的反码为1000 0000
补码
正数的补码与原码一致;
负数的补码是该数的反码加1。
如:
127的补码为0111 1111
-127的补码为1000 0001
补码的好处
如果计算机内部采用原码来表示数,那么在进行加法和减法运算的时候,需要转化为两个绝对值的加法和减法运算;
计算机既要实现加法器,又要实现减法器,代价有点大,那么可不可以只用一种类型的运算器来实现加和减的远算呢?
很容易想到的就是化减为加,举一个生活中的例子来说明这个问题:
时钟一圈是360度,当然也存在365度,但其实它和5度是一样的;
相同的道理,-30度表示逆时针旋转30度,其与顺时针旋转330度是一样的;
这里数字360表示时钟的一圈,在计算机里类似的概念叫模,它可以实现化减为加,本质上是将溢出的部分舍去而不改变结果。
易得,单字节(8位)运算的模为256=2^8。
在没有符号位的情况下,127+2=129,即:
这时,我们将最高位作为符号位,计算机数字均以补码来表示,则1000 0001的原码为减1后按位取反得1111 1111,也就是-127。
也就是说,计算机里的129即表示-127,相当于模256为一圈,顺时针的129则和逆时针127即-127是一样的。
故可以得到以下结论:
负数的补码为模减去该数的绝对值。
如-5的补码为:
-5=256-5=251=1111 1011(二进制)
同样的,临界值-128也可以表示出来:
-128=256-128=128=1000 0000(二进制)
但是正128就会溢出了,故单字节(8位)表示的数字范围为-128–127。
最后,我们来看一下,补码是如何通过模的溢出舍弃操作来完成化减为加的!
16-5=16+(-5)=11
1 0000 1011将溢出位舍去,得0000 1011(二进制)=11。
经典算法
1. 实现几何运算
交换两个数的值。
public int Add(int a,int b){
a = a^b;
b = a^b;
a = a^b;
}
加
public int Add(int num1,int num2){
//迭代进位与无进位的和相加
int temp;
while(num2!=0){
//两个数字相与并左移一位相当于加法的进位
temp = (num1&num2)<<1;
//两个数字相异或相当于加法无进位
num1^=num2;
num2 = temp;
}
return num1;
}
减
public int Min(int num1,int num2){
int temp=0;
//而负数在计算机中的二进制是用补码表示的,一个负数就是它的绝对值的反码加一。
temp=Add(~num2,1);
return Add(num1,temp);
}
乘
左移乘2
int multiply(int a, int b) {
//将乘数和被乘数都取绝对值
int multiplicand = a < 0 ? add(~a, 1) : a;
int multiplier = b < 0 ? add(~b , 1) : b;
//计算绝对值的乘积
int product = 0;
while(multiplier > 0) {
if((multiplier & 0x1) > 0) {// 每次考察乘数的最后一位
product = add(product, multiplicand);
}
multiplicand = multiplicand << 1;// 每运算一次,被乘数要左移一位
multiplier = multiplier >> 1;// 每运算一次,乘数要右移一位(可对照上图理解)
}
//计算乘积的符号
if((a ^ b) < 0) {
product = add(~product, 1);
}
return product;
}
除
右移除2
int divide_v2(int a,int b) {
// 先取被除数和除数的绝对值
int dividend = a > 0 ? a : add(~a, 1);
int divisor = b > 0 ? a : add(~b, 1);
int quotient = 0;// 商
int remainder = 0;// 余数
for(int i = 31; i >= 0; i--) {
//比较dividend是否大于divisor的(1<<i)次方,不要将dividend与(divisor<<i)比较,而是用(dividend>>i)与divisor比较,
//效果一样,但是可以避免因(divisor<<i)操作可能导致的溢出,如果溢出则会可能dividend本身小于divisor,但是溢出导致dividend大于divisor
if((dividend >> i) >= divisor) {
quotient = add(quotient, 1 << i);
dividend = substract(dividend, divisor << i);
}
}
// 确定商的符号
if((a ^ b) < 0){
// 如果除数和被除数异号,则商为负数
quotient = add(~quotient, 1);
}
// 确定余数符号
remainder = b > 0 ? dividend : add(~dividend, 1);
return quotient;// 返回商
}
幂次方(快速幂算法)
/**
* 1.全面考察指数的正负、底数是否为零等情况。
* 2.写出指数的二进制表达,例如13表达为二进制1101。
* 3.举例:10^1101 = 10^0001*10^0100*10^1000。
* 4.通过&1和>>1来逐位读取1101,为1时将该位代表的乘数累乘到最终结果。
*/
public double Power(double base, int n) {
double res = 1,curr = base;
int exponent;
if(n>0){
exponent = n;
}else if(n<0){
if(base==0)
throw new RuntimeException("分母不能为0");
exponent = -n;
}else{// n==0
return 1;// 0的0次方
}
while(exponent!=0){
if((exponent&1)==1)
res*=curr;
curr*=curr;// 翻倍
exponent>>=1;// 右移一位
}
return n>=0?res:(1/res);
}