给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。
说明:
如果存在多种有效的行程,你可以按字符自然排序返回最小的行程组合。例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前
所有的机场都用三个大写字母表示(机场代码)。
假定所有机票至少存在一种合理的行程。
示例 1:
输入: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
输出: ["JFK", "MUC", "LHR", "SFO", "SJC"]
示例 2:
输入: [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出: ["JFK","ATL","JFK","SFO","ATL","SFO"]
解释: 另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。
代码:
func findItinerary(tickets [][]string) []string {
var d map[string][]string
var ans []string
d = map[string][]string{}
//先吧单独的机票拆分出来成为键值对,相同出发地的在之后要进行排序
for _, v := range tickets {
d[v[0]] = append(d[v[0]], v[1])
}
for _, v := range d {
sort.Strings(v)
}
ans = []string{}
var dfs func (f string)
//递归
dfs = func (f string) {
for len(d[f]) > 0 {
v := d[f][0]
d[f] = d[f][1:]
dfs(v)
}
ans = append([]string{f}, ans...)
}
dfs("JFK")
return ans
}