深度学习中的学习率调整策略(1)

本文探讨了深度学习中学习率的重要性,并介绍了如何动态调整学习率以优化模型训练。通过PyTorch的scheduler模块,展示了14种学习率调整策略,如LambdaLR、StepLR和CosineAnnealingLR等。特别提到了LinearLR策略,通过线性方式在训练过程中改变学习率。文章还指出,当需要多个策略结合时,可以使用链式调度来实现。
摘要由CSDN通过智能技术生成
alt

学习率(LearningRate, LR/lr)是深度学习中很重要的一个超参数了。其公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值