a^b%p

b在二进制下有k位,其中 i 位的数字是 Ci

那么:b=Ck*2^(k-1)+C(k-1)*2^(k-2)+......+C0*2^0

于是 a^b=a^(C(k-1)*2^(k-1))*a^(C(k-2)*2^(k-2))*......a^(C0*2^0)

又因为  a^(2^(i))=(a^(2^(i-1)))^(2)

所以我们很容易通过k次递推求出每个乘积项,当 Ci=1时,把该乘积累加到答案中。

b&1运算可以取出b在二进制表示下的最低位,而b>>1运算可以舍去最低位,在递推过程中将二者结合,就可以遍历b在二进制表示下的所有位数。

#include<bits/stdc++.h>
using namespace std;
int power(int a,int b,int p)
{
    int ans=1%p;
    for(;b;b>>=1)
    {
        if(b&1)
          ans=(long long)ans*a%p;
        a=(long long)a*a%p;
    }
    return ans;
}
int main()
{
    int a,b,p;
    cin>>a>>b>>p;
    cout<<power(a,b,p)<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值