b在二进制下有k位,其中 i 位的数字是 Ci
那么:b=Ck*2^(k-1)+C(k-1)*2^(k-2)+......+C0*2^0
于是 a^b=a^(C(k-1)*2^(k-1))*a^(C(k-2)*2^(k-2))*......a^(C0*2^0)
又因为 a^(2^(i))=(a^(2^(i-1)))^(2)
所以我们很容易通过k次递推求出每个乘积项,当 Ci=1时,把该乘积累加到答案中。
b&1运算可以取出b在二进制表示下的最低位,而b>>1运算可以舍去最低位,在递推过程中将二者结合,就可以遍历b在二进制表示下的所有位数。
#include<bits/stdc++.h>
using namespace std;
int power(int a,int b,int p)
{
int ans=1%p;
for(;b;b>>=1)
{
if(b&1)
ans=(long long)ans*a%p;
a=(long long)a*a%p;
}
return ans;
}
int main()
{
int a,b,p;
cin>>a>>b>>p;
cout<<power(a,b,p)<<endl;
return 0;
}