51nod 1079 中国剩余定理 模板

24 篇文章 0 订阅

一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。

Input

第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10)
第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= 100, 0 <= K < P)

Output

输出符合条件的最小的K。数据中所有K均小于10^9。

Input示例

3
2 1
3 2
5 3

Output示例

23

中国剩余定理的模板题目.....

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn=15;
int n;
typedef long long ll;
ll m[maxn],a[maxn];
void Extend (ll A,ll B,ll& X,ll& Y)
{
    if(B==0)
    {
       X=1; Y=0;
    }
    else
    {
        Extend(B,A%B,X,Y);
        ll temp=X;
        X=Y;
        Y=temp-A/B*Y;
    }
}
void Solve ()
{
    ll M=1;
    ll ans=0;
    for (int i=0;i<n;i++)
        M*=m[i];
    for (int i=0;i<n;i++)
    {
        ll temp=M/m[i];
        ll x,y;
        Extend(temp,m[i],x,y);
        ans=(ans+x*a[i]*temp)%M;
    }
    printf("%lld\n",(ans+M)%M);
}
int main()
{
    scanf("%d",&n);
    for (int i=0;i<n;i++)
    {
        scanf("%lld%lld",&m[i],&a[i]);
    }
    Solve();
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值