过拟合、欠拟合 & 梯度消失、梯度爆炸 & 循环神经网络进阶

过拟合、欠拟合

  1. 过拟合、欠拟合的概念
  2. 权重衰减
  3. 丢弃法
  • 训练误差与泛化误差

训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。

  • 模型选择

    • min ⁡ θ 1 N ∑ i = 1 N L ( y i , f θ ( x i ) ) + λ ∣ ∣ θ ∣ ∣ 2 \min_{\theta}\frac{1}{N}\sum_{i=1}^{N}L(y_i,f_{\theta}(x_i))+\lambda||{\theta}||^2 minθN1i=1NL(yi,fθ(xi))+λθ2
    • 机器学习解决方案包括参数 θ \theta θ和优化超参数 λ \lambda λ,超参数无法从训练过程中学习,需要预先定义。模型选择即超参数优化,通过不同的超参数设置,训练不同的模型,选择最好的结果。
    • 验证数据集
      使用在训练数据集和测试数据集以外的数据来进行模型选择,例如:从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。
    • 测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。
    • 由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。
    • k-折交叉验证:
      • 设置超参数 λ \lambda λ
      • 原始训练数据随机分成k份数据集
      • 重复k次:
        • 第i份数据集为验证数据集,其余k-1份为训练数据集
        • 对训练数据建模,在验证数据上得到评估分数,
      • k个评估分数取平均作为 λ \lambda λ的模型性能
  • 过拟合与欠拟合

    • 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);统计模型或机器学习算法无法捕捉数据的基础变化趋势。
    • 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting);统计模型把随机误差和噪声也考虑进去而不仅仅是考虑数据的基础关联。
    • 影响因素:模型复杂度和训练数据集大小。
  • 拟合实验

%matplotlib inline
import torch
import numpy as np
import sys
sys.path.append("..")
import d2lzh_pytorch as d2l
print(torch.__version__)

# 模型参数
n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
features = torch.randn((n_train + n_test, 1))
poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1) 
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
          + true_w[2] * poly_features[:, 2] + true_b)
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
## display
features[:2], poly_features[:2], labels[:2]

# 定义训练
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    # d2l.set_figsize(figsize)
    d2l.plt.xlabel(x_label)
    d2l.plt.ylabel(y_label)
    d2l.plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':')
        d2l.plt.legend(legend)

num_epochs, loss = 100, torch.nn.MSELoss()

def fit_and_plot(train_features, test_features, train_labels, test_labels):
    # 初始化网络模型
    net = torch.nn.Linear(train_features.shape[-1], 1)
    # 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了
    
    # 设置批量大小
    batch_size = min(10, train_labels.shape[0])    
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)      # 设置数据集
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True) # 设置获取数据方式
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.01)                      # 设置优化函数,使用的是随机梯度下降优化
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:                                                 # 取一个批量的数据
            l = loss(net(X), y.view(-1, 1))                                     # 输入到网络中计算输出,并和标签比较求得损失函数
            optimizer.zero_grad()                                               # 梯度清零,防止梯度累加干扰优化
            l.backward()                                                        # 求梯度
            optimizer.step()                                                    # 迭代优化函数,进行参数优化
        train_labels = train_labels.view(-1, 1)
        test_labels = test_labels.view(-1, 1)
        train_ls.append(loss(net(train_features), train_labels).item())         # 将训练损失保存到train_ls中
        test_ls.append(loss(net(test_features), test_labels).item())            # 将测试损失保存到test_ls中
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])    
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
             range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net.weight.data,
          '\nbias:', net.bias.data)

fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:]) # 三阶正常

fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train], labels[n_train:]) # 线性欠拟合

fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2], labels[n_train:]) # 训练样本不足过拟合
  • 权重衰减

权重衰减等价于 L 2 L_2 L2范数正则化。正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段。

  • 损失函数: ℓ ( w 1 , w 2 , b ) + λ 2 n ∣ w ∣ 2 , \ell(w_1, w_2, b) + \frac{\lambda}{2n} |\boldsymbol{w}|^2, (w1,w2,b)+2nλw2,
    当权重参数均为0时,惩罚项最小。当 λ \lambda λ较大时,惩罚项在损失函数中的比重较大,这通常会使学到的权重参数的元素较接近0。

  • 权重更新方式: w 1 ← ( 1 − η λ ∣ B ∣ ) w 1 − η ∣ B ∣ ∑ i ∈ B x 1 ( i ) ( x 1 ( i ) w 1 + x 2 ( i ) w 2 + b − y ( i ) ) , w 2 ← ( 1 − η λ ∣ B ∣ ) w 2 − η ∣ B ∣ ∑ i ∈ B x 2 ( i ) ( x 1 ( i ) w 1 + x 2 ( i ) w 2 + b − y ( i ) ) . \begin{aligned} w_1 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_1^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\ w_2 &\leftarrow \left(1- \frac{\eta\lambda}{|\mathcal{B}|} \right)w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_2^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right). \end{aligned} w1w2(1Bηλ)w1BηiBx1(i)(x1(i)w1+x2(i)w2+by(i)),(1Bηλ)w2BηiBx2(i)(x1(i)w1+x2(i)w2+by(i)).

  • 其他的正则化( L 1 , L 4 , ⋯ L_1, L_4, \cdots L1,L4,
    在这里插入图片描述

  • 权重衰减-pytorch简洁实现

def fit_and_plot_pytorch(wd):
    # 对权重参数衰减。权重名称一般是以weight结尾
    net = nn.Linear(num_inputs, 1)
    nn.init.normal_(net.weight, mean=0, std=1)
    nn.init.normal_(net.bias, mean=0, std=1)
    optimizer_w = torch.optim.SGD(params=[net.weight], lr=lr, weight_decay=wd) # 对权重参数衰减
    optimizer_b = torch.optim.SGD(params=[net.bias], lr=lr)  # 不对偏差参数衰减
    
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X), y).mean()
            optimizer_w.zero_grad()
            optimizer_b.zero_grad()
            
            l.backward()
            
            # 对两个optimizer实例分别调用step函数,从而分别更新权重和偏差
            optimizer_w.step()
            optimizer_b.step()
        train_ls.append(loss(net(train_features), train_labels).mean().item())
        test_ls.append(loss(net(test_features), test_labels).mean().item())
    d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
                 range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('L2 norm of w:', net.weight.data.norm().item())

# display
fit_and_plot_pytorch(0)
fit_and_plot_pytorch(3)
  • 丢弃法
    设随机变量 ξ i \xi_i ξi为0和1的概率分别为 p p p 1 − p 1-p 1p。使用丢弃法时我们计算新的隐藏单元 h i ′ = ξ i 1 − p h i h_i' = \frac{\xi_i}{1-p} h_i hi=1pξihi

在训练中隐藏层神经元的丢弃是随机的,即 h 1 , … , h 5 h_1, \ldots, h_5 h1,,h5都有可能被清零,输出层的计算无法过度依赖 h 1 , … , h 5 h_1, \ldots, h_5 h1,,h5中的任一个,从而在训练模型时起到正则化的作用,并可以用来应对过拟合。

  • 代码实现
def dropout(X, drop_prob):
    X = X.float()
    assert 0 <= drop_prob <= 1
    keep_prob = 1 - drop_prob
    # 这种情况下把全部元素都丢弃
    if keep_prob == 0:
        return torch.zeros_like(X)
    mask = (torch.rand(X.shape) < keep_prob).float()
    
    return mask * X / keep_prob

# 参数的初始化
num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

W1 = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, num_hiddens1)), dtype=torch.float, requires_grad=True)
b1 = torch.zeros(num_hiddens1, requires_grad=True)
W2 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens1, num_hiddens2)), dtype=torch.float, requires_grad=True)
b2 = torch.zeros(num_hiddens2, requires_grad=True)
W3 = torch.tensor(np.random.normal(0, 0.01, size=(num_hiddens2, num_outputs)), dtype=torch.float, requires_grad=True)
b3 = torch.zeros(num_outputs, requires_grad=True)

params = [W1, b1, W2, b2, W3, b3]

drop_prob1, drop_prob2 = 0.2, 0.5

def net(X, is_training=True):
    X = X.view(-1, num_inputs)
    H1 = (torch.matmul(X, W1) + b1).relu()
    if is_training:  # 只在训练模型时使用丢弃法
        H1 = dropout(H1, drop_prob1)  # 在第一层全连接后添加丢弃层
    H2 = (torch.matmul(H1, W2) + b2).relu()
    if is_training:
        H2 = dropout(H2, drop_prob2)  # 在第二层全连接后添加丢弃层
    return torch.matmul(H2, W3) + b3

def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        if isinstance(net, torch.nn.Module):
            net.eval() # 评估模式, 这会关闭dropout
            acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
            net.train() # 改回训练模式
        else: # 自定义的模型
            if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                # 将is_training设置成False
                acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
            else:
                acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
        n += y.shape[0]
    return acc_sum / n

num_epochs, lr, batch_size = 5, 100.0, 256  # 这里的学习率设置的很大,原因与之前相同。
loss = torch.nn.CrossEntropyLoss()
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root='./Datasets/FashionMNIST2065')
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)


## 简洁实现
net = nn.Sequential(
        d2l.FlattenLayer(),
        nn.Linear(num_inputs, num_hiddens1),
        nn.ReLU(),
        nn.Dropout(drop_prob1),
        nn.Linear(num_hiddens1, num_hiddens2), 
        nn.ReLU(),
        nn.Dropout(drop_prob2),
        nn.Linear(num_hiddens2, 10)
        )`在这里插入代码片`

for param in net.parameters():
    nn.init.normal_(param, mean=0, std=0.01)

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)

梯度消失、梯度爆炸

  1. 梯度消失和梯度爆炸的基本概念
  2. 影响模型效果的其他因素影响:协变量偏移,标签偏移,概念偏移
  3. Kaggle房价预测的实现流程
  • 梯度消失&爆炸:当神经网络的层数较多时,模型的数值稳定性容易变差。

假设一个层数为 L L L的多层感知机的第 l l l H ( l ) \boldsymbol{H}^{(l)} H(l)的权重参数为 W ( l ) \boldsymbol{W}^{(l)} W(l),输出层 H ( L ) \boldsymbol{H}^{(L)} H(L)的权重参数为 W ( L ) \boldsymbol{W}^{(L)} W(L)。为了便于讨论,不考虑偏差参数,且设所有隐藏层的激活函数为恒等映射(identity mapping) ϕ ( x ) = x \phi(x) = x ϕ(x)=x。给定输入 X \boldsymbol{X} X,多层感知机的第 l l l层的输出 H ( l ) = X W ( 1 ) W ( 2 ) … W ( l ) \boldsymbol{H}^{(l)} =\boldsymbol{X} \boldsymbol{W}^{(1)} \boldsymbol{W}^{(2)} \ldots \boldsymbol{W}^{(l)} H(l)=XW(1)W(2)W(l)。此时,如果层数 l l l较大, H ( l ) \boldsymbol{H}^{(l)} H(l)的计算可能会出现衰减或爆炸。举个例子,假设输入和所有层的权重参数都是标量,如权重参数为0.2和5,多层感知机的第30层输出为输入 X \boldsymbol{X} X分别与 0. 2 30 ≈ 1 × 1 0 − 21 0.2^{30} \approx 1 \times 10^{-21} 0.2301×1021(消失)和 5 30 ≈ 9 × 1 0 20 5^{30} \approx 9 \times 10^{20} 5309×1020(爆炸)的乘积。当层数较多时,梯度的计算也容易出现消失或爆炸。

  • 随机初始化:通常将神经网络的模型参数,特别是权重参数,进行随机初始化。
    • Pytorch随机初始化
      PyTorch中nn.Module的模块参数都采取了较为合理的初始化策略。参考源代码
    • Xavier随机初始化
      假设某全连接层的输入个数为 a a a,输出个数为 b b b,Xavier随机初始化将使该层中权重参数的每个元素都随机采样于均匀分布:
      U ( − 6 a + b , 6 a + b ) . U\left(-\sqrt{\frac{6}{a+b}}, \sqrt{\frac{6}{a+b}}\right). U(a+b6 ,a+b6 ).

模型参数初始化后,每层输出的方差不该受该层输入个数影响,且每层梯度的方差也不该受该层输出个数影响。

  • 协变量偏移
  • 标签偏移
  • 概念偏移

…待续

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值