逆元

 扩展欧几里得法

#include <iostream>
using namespace std;
long long int extendGcd(long long a, long long b, long long &x, long long &y) {
    if (a == 0 && b == 0) {
        return -1;   }
        if (b== 0) {
            x = 1;
            y = 0; return a;
        }
        long long d = extendGcd(b, a % b, y, x); y -= a / b * x;
        return d;
    }

    // 求逆元 ax = 1(mod n)
    long long modReverse(long long a, long long n) {
        long long x, y;
        long long d = extendGcd(a, n, x, y);
        if (d == 1)
        {
            return (x % n + n) % n; }
        else {
            return -1;
        }
    }
int main()
{
    int m,n;
    while(cin>>m>>n)
    cout<<modReverse(m, n);
}

费马小定理

#include <iostream>
using namespace std;
typedef long long ll;
ll qpow(ll a,ll b,ll p)
{
    ll tmp = 1;
    while(b)
    {
        if(1&b)
            tmp = (tmp*a)%p;
        a = (a*a)%p;
        b>>=1;
    }
    return tmp;
}
ll inv(ll a,ll p) //费马小定理求逆元
{
    return qpow(a,p-2,p);
}
int main()
{
    int a,b;
    cin>>a>>b;
    cout<<inv(a,b);
}

逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p),也就是只多了一个取余的操作,这个取余的操作,就会保证a的逆元不一定只是a的倒数。那么我们的逆元有什么作用呢?

并且取余还不满足下面式子:( a/b )%p = (a%p  /  b%p)  %  p ,那么我们如果遇到b过大必须在中间过程进行取余的操作,那么我们会发现在乘法中满足:(a*b) % p = (a%p  *  b%p) %p,那么我们只要将上面式子转换为下面乘法的式子就可以了

我们用inv(b)来表示b的逆元,那么他一定满足:b*inv(b) = 1(mod p)    ==>  b = 1/inv(b) ,那么我们代入上面的除法的式子:(a/b)%p =     (a * inv(b)) %p = (a%p  *  inv(b)%p) % p,这样我们就可以根据逆元来将除法取余的式子转换为乘法取余的式子

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值