清楼小刘
码龄6年
  • 655,704
    被访问
  • 243
    原创
  • 1,369,599
    排名
  • 157
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2016-01-23
博客简介:

I feel lost

博客描述:
没有解决不了的问题,只有遇不到的问题
查看详细资料
个人成就
  • 获得153次点赞
  • 内容获得92次评论
  • 获得650次收藏
创作历程
  • 1篇
    2020年
  • 2篇
    2019年
  • 66篇
    2018年
  • 176篇
    2017年
  • 60篇
    2016年
成就勋章
TA的专栏
  • jsp
    7篇
  • 线性代数
    1篇
  • C/C++网络编程
    6篇
  • 设计模式
    5篇
  • 通信原理
    1篇
  • 数值分析
    1篇
  • cocos2d
    4篇
  • 本科毕业设计
    19篇
  • MPI
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

小白安装固态硬盘

作为小白,购买、安装固态硬盘的全过程购买前准备目前用的较多固态的硬盘可能分为2种接口:STAT 3.0M2其他的型号可以自己百度之搞清楚自己电脑上支持接入固态硬盘的接口类型网上有很多教程,不少都推荐使用第三方软件进行检测,,如鲁大师等。我这里主要通过了解自己硬盘的型号来获取电脑支持的接口类型:安装固态硬盘所需材料固态硬盘的数据线固态硬盘的电源线原则上还需...
原创
发布博客 2020.03.07 ·
325 阅读 ·
0 点赞 ·
0 评论

windows下字符串格式化的方法总结

日常开发中,经常需要用到字符串格式化,将某个数字放进字符串里面。最开始C语言时应该都使用过prinft:std::string strName = "aLi";int nAge = 23;printf("My name is %s. My age is %d", strName, nAge);但是printf是直接输出到控制台的,有时候我们需要在某些地方使用到,就需要用到字符串来存储这个...
原创
发布博客 2019.04.14 ·
969 阅读 ·
1 点赞 ·
0 评论

windows下的各种字符串

在windows C++的环境下,会接触到好多种字符串类型:C++的std::string, std::wstring, char*, wchar*, windows的LPCTSTR,MFC的CString…先来说说C++入门时最早接触的: std::string类和char*string是一个类,用起来非常方便,char*转成std::string的几种方法:char szName[10...
原创
发布博客 2019.04.13 ·
360 阅读 ·
0 点赞 ·
0 评论

Object seilcing 对象切割测试

Object seilcing 对象切割测试阅读侯杰的《深入浅出MFC》里面提到的虚函数的一章,提到了对象切割: 即将一个子类强制转换成父类时,它会把该对象的子类部分切割掉 比如,考虑这样一条强制转换语句: (CFahter) CChldObject.MemberFunc(); 会将子类对象强制转换成父类对象——它会产生一个临时对象,调用了拷贝构造函数 考虑到我写的如下测试代码: ...
原创
发布博客 2018.06.26 ·
301 阅读 ·
1 点赞 ·
0 评论

什么是市盈率

什么是市盈率我们在看股票时有一个指标,叫做市盈率,又有分类:市盈率(静),市盈率TTM。 比如在2018年6月,腾讯的市盈率(静)是44.288,而市盈率TTM是38.575。而美图的这2个指数都是“亏损”。 市盈率(Price earnings ratio,即P/E ratio)也称“本益比”、“股价收益比率”或“市价盈利比率(简称市盈率)”。市盈率是最常用来评估股价水平是否合理的指标之...
原创
发布博客 2018.06.10 ·
5108 阅读 ·
1 点赞 ·
1 评论

rofl文件如何播放

rofl文件如何播放喜欢玩lol的朋友都知道,现在比赛记录有了一个自动回放的功能,并且可以下载到本地,然后可以打开lol播放回放,那么利用下载回来的本地文件,如何可以不用LOL客户端进行播放呢?...
原创
发布博客 2018.06.09 ·
57974 阅读 ·
0 点赞 ·
0 评论

Pycharm更换python解释器

安装了pycharm之后有一个新装的python解释器,顶替了之前系统的python那样的话,原来利用pip安装的一些库会无法import.要么加入环境变量,要么更换运行的解释器:MacPyCharm > Preferences... > Project Interpreter > Python Interpreters WindowsFile->Default Setti...
原创
发布博客 2018.04.14 ·
18350 阅读 ·
0 点赞 ·
0 评论

Dask快速搭建分布式集群(大数据0基础可以理解,并使用!)

转载:  https://blog.csdn.net/a19990412/article/details/79510219常开心,解决了很久都没有解决的问题使用的语言: Python3.5 分布式机器: windows7注意到,其实,通过这工具搭建分布式不需要管使用的电脑是什么系统。分布式使用流程使用分布式系统用户用户分布式Scheduler分布式Scheduler分布式worker1分布式wor...
转载
发布博客 2018.04.12 ·
2685 阅读 ·
1 点赞 ·
0 评论

MPI 教程PPT

发布资源 2018.04.12 ·
ppt

MPI的开源代码

发布资源 2018.04.08 ·
gz

基于传输的排序约束的平滑项

优化了朴素的平滑项,那么有以下几个问题:(1)朴素的平滑项有什么缺陷(2)优化后的平滑是怎么克服这些缺陷的?(3)如何计算
原创
发布博客 2018.04.07 ·
180 阅读 ·
0 点赞 ·
0 评论

什么是Multi-View Stereo

毕设中的立体重建是基于多视角立体几何的,那么就有必要学习一下多视角立体几何(1)什么是Multi-View Stereo(2)它与双目视觉立体重建的区别
转载
发布博客 2018.04.06 ·
5498 阅读 ·
2 点赞 ·
1 评论

Sfm方法过程及原理

1. 算法简介       SFM算法是一种基于各种收集到的无序图片进行三维重建的离线算法。在进行核心的算法structure-from-motion之前需要一些准备工作,挑选出合适的图片。    先从图片中提取焦距信息(之后初始化BA( Bundle adjust)需要),然后利用SIFT等特征提取算法去提取图像特征,用kd-tree模型去计算两张图片特征点之间的欧式距离进行特征点的匹配,从而找...
翻译
发布博客 2018.04.06 ·
36383 阅读 ·
22 点赞 ·
5 评论

获取视频序列的深度图

发布资源 2018.04.06 ·
pdf

基于散射效应的颜色一致性项

对于原先的朴素的颜色一致性项,基于散射效应的颜色一致性项:(1)什么是散射效应?(2)原来的颜色一致性项有什么缺陷?(3)基于散射效应的颜色一致性项如何计算?(1)什么是散射效应?定义:  在《光学教程》中,对散射有明确的定义:在光学性质均匀的介质中或两种折射率不同的均匀介质的界面上,无论光的直射、反射或折射,都仅限于在特定的一些方向上,而在其他方向光强则等于零,我们沿光束的侧向观察就应当看不到光...
原创
发布博客 2018.04.06 ·
381 阅读 ·
0 点赞 ·
0 评论

立体重建-视频去雾的算法的流程

1. 利用标准Sfm方法得到每一帧的相机参数 intrinsic matrix  K, 旋转矩阵 R, 平移矩阵 t。                                                            ——这三个东西可以在之前的《什么是立体重建》中找到    这部分有很多开源轮子可以用,不用自己写,参考《Sfm方法过程及原理》2.得到初始化的每一帧的深度图---...
原创
发布博客 2018.04.05 ·
574 阅读 ·
1 点赞 ·
0 评论

双目立体视觉的数学原理

1.前言戏说双目立体视觉是基于视差原理,由多幅图像获取物体三维几何信息的方法。在机器视觉系统中,双目视觉一般由双摄像机从不同角度同时获取周围景物的两幅数字图像,或有由单摄像机在不同时刻从不同角度获取周围景物的两幅数字图像,并基于视差原理即可恢复出物体三维几何信息,重建周围景物的三维形状与位置。双目视觉有的时候我们也会把它称为体视,是人类利用双眼获取环境三维信息的主要途径。从目前来看,随着机器视觉理...
翻译
发布博客 2018.04.05 ·
1206 阅读 ·
0 点赞 ·
0 评论

什么是立体重建

基于视觉的三维重建,指的是通过摄像机获取场景物体的数据图像,并对此图像进行分析处理,再结合计算机视觉知识推导出现实环境中物体的三维信息。那么,所谓的三维信息,应该是怎样的信息呢?1. 相关概念(1)彩色图像与深度图像彩色图像也叫作RGB图像,R、G、B三个分量对应于红、绿、蓝三个通道的颜色,它们的叠加组成了图像像素的不同灰度级。RGB颜色空间是构成多彩现实世界的基础。深度图像又被称为距离图像,与灰...
翻译
发布博客 2018.04.05 ·
809 阅读 ·
0 点赞 ·
0 评论

实验结果和分析

实验做完了,对应效果也有了。那么有一些问题:(1) 实验结果有什么不足(2) 都是什么原因导致的?(3) 为什么这个东西会导致这样的结果?这里不要乱分析, 免得给自己挖坑。...
原创
发布博客 2018.04.04 ·
10629 阅读 ·
1 点赞 ·
0 评论

RGB To 深度图

最开始,我们要从原图序列得到对应的场景深度图,问题如下:(1) RGB图像是如何转换成场景深度图的?首先,我们要有一个清晰的概念: 仅从单幅RGB图像中,是无法获取深度信息的。深度图像的每个像素点的灰度值可用于表征场景中某一点距离摄像机的远近。 获取深度图像的方法可以分为两类:被动测距传感和主动深度传感。 In short:深度图像的像素值反映场景中物体到相机的距离,获取深度图像的方法=被动测距传...
原创
发布博客 2018.04.04 ·
4546 阅读 ·
1 点赞 ·
0 评论
加载更多