【分治算法2.3】 二分搜索技术(C++实现)

1.问题

给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x

2.基本思想

将n个元素分成个数大致相同的两半,取a[n/2]与x作比较。

a[n/2]与x作比较有三种情况:

3.C++代码

例:设a=[11,22,33,44,55,66,77],要找出特定元素x=77。

方法1:非递归算法。

#include <iostream>
using namespace std;

int num = 0;
//方法1:非递归算法。
template<class Type>
int BinarySearch(Type a[], const Type x, int n) {              //在a[0]<=a[1]<=...<=a[n-1]中搜索x
    //找到x时返回其在数组中的位置,否则返回-1
    int left = 0;  int right = n - 1;
    while (left <= right)
    {
        int middle = (left + right) / 2;
        num += 1;
        cout << "二分搜索技术步骤,第" << num << "次选取的中间元素为:" << a[middle] << endl;
        if (x == a[middle])
            return middle;
        else if (x > a[middle])
            left = middle + 1;
        else right = middle - 1;
    }
    return -1;
}

int main() {
    int i, x, ret, left = 0;
    int a[] = {11,22,33,44,55,66,77};                      //输入给定已按升序排好序的n个元素
    int right = sizeof(a) / sizeof(int);                    //数组长度=sizeof(数组名)/sizeof(数组类型)
    for (i = 0; i < right; i++)
        cout << a[i] << "  ";
 
    cout << ("\n请输人所要查找的元素:");
    cin >> x;                                                //输入要查找的元素数
    ret = BinarySearch(a, x, right);                        //调用方法1:非递归算法
    if (-1 == ret)
        cout << "查找失败,查找的元素不在给定的数组中" << endl;
    else {
        cout << "查找成功" << endl;
        cout << "查找元素的下标是:" << ret << endl;
    }
  
    return 0;

}

方法2:递归算法 

#include <iostream>
using namespace std;

int num = 0;
template<class Type>

int recursionBS(int a[], int x, int left, int right) {
    //a表示数组,x表示要查找的元素,left 表示搜索区间的第1个元素,right 表示搜索区间的最后一个元素
    if (left > right) {                                      ///递归结束条件
        return -1;
    }
    int middle = (left + right) / 2;                         //计算middle值(查找范围的中间值)
    num += 1;
    cout << "二分搜索技术步骤,第" << num << "次选取的中间元素为:" << a[middle] << endl;
    if (x == a[middle]) {                                    //x 等于a[middle],查找成功,算法结束
        return middle;
    }
    else if (x > a[middle]) {                                //x 大于a[middle],在后半部分查找
        return recursionBS(a, x, middle + 1, right);
    }
    else {                                                    //x 小于a[middle],在前半部分查找
        return recursionBS(a, x, left, middle - 1);
    }
}

int main() {
    int i, x, ret, left = 0;
    int a[] = {11,22,33,44,55,66,77};                      //输入给定已按升序排好序的n个元素
    int right = sizeof(a) / sizeof(int);                    //数组长度=sizeof(数组名)/sizeof(数组类型)
    for (i = 0; i < right; i++)
        cout << a[i] << "  ";
 
    cout << ("\n请输人所要查找的元素:");
    cin >> x;                                                //输入要查找的元素数
    ret = recursionBS(a, x, left , right);                  //调用方法2:递归算法
    if (-1 == ret)
        cout << "查找失败,查找的元素不在给定的数组中" << endl;
    else {
        cout << "查找成功" << endl;
        cout << "查找元素的下标是:" << ret << endl;
    }
  
    return 0;

}

4.改写二分搜索算法

当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。

5.C++代码

#include <iostream>
using namespace std;

//改写二分搜索算法,当搜索元素x不在数组中时,返回小于x的最大元素的位置i和大于x的最小元素位置j。


int num = 0;
//1.非递归算法。
template<class Type>
int BinarySearch(Type a[], const Type x, int n) {   //在a[0]<=a[1]<=...<=a[n-1]中搜索x
    //找到x时返回其在数组中的位置,否则返回-1
    int i = 0, j = 0;
    int left = 0;  int right = n - 1;
    while (left <= right)
    {
        int middle = (left + right) / 2;
        num += 1;
        cout << "第" << num << "次选取的中间元素为:" << a[middle] << endl;
        if (x == a[middle])
            return middle;
        else if (x > a[middle])
            left = middle + 1;
        else right = middle - 1;
    }
    i = right;
    j = left;
    cout << "小于x的最大元素的位置i为:" << i << ",大于x的最小元素的位置j为:" << j << endl;
    return -1;
}



//2.递归算法
int recursionBS(int a[], int x, int left, int right , int right_one) {
    //a表示数组,x表示要查找的元素,left 表示搜索区间的第1个元素,right 表示搜索区间的最后一个元素
    int i = 0, j = 0;
    

    if (left >right) { ///递归结束条件
        i = right;
        j = left;
        if (j > right_one) {
            cout << "小于x的最大元素的位置i为:" << right_one <<",没有大于x的元素"<<endl;
        }
        else if (i < 0) {
            cout << "没有小于x的元素,大于x的最小元素的位置j为0." << endl;
        }
        else
        {
            cout << "小于x的最大元素的位置i为:" << i << ",大于x的最小元素的位置j为:" << j << endl;
        }
            
        return -1;
    }
    int middle = (left + right) / 2;  //计算middle值(查找范围的中间值)
    num += 1;
   
    
    cout << "第" << num << "次选取的中间元素为:" << a[middle] << endl;

    if (x == a[middle]) {                           //x 等于a[middle],查找成功,算法结束
        return middle;
    }
    else if (x > a[middle]) {                         //x 大于a[middle],在后半部分查找
        return recursionBS(a, x, middle + 1, right, right_one);
    }
    else {                                            //x 小于a[middle],在前半部分查找
        return recursionBS(a, x, left, middle - 1, right_one);
    }
  
}


int main() {
    int i, x, ret, left = 0;
    int a[] = {11,22,33,44,55,66,77 };                      //输入已经排好序的数据
    int right = sizeof(a) / sizeof(int);                    //数组长度=sizeof(数组名)/sizeof(数组类型)
    int right_one = right - 1;
   
    for (i = 0; i < right; i++)
        cout << a[i] << "  ";
    //printf("%d\t", a[i]);
    cout << ("\n请输人所要查找的元素:");
    cin >> x;    //输入要查找的元素数
    //ret = BinarySearch(a, x, right);                //1.采用非递归算法
    ret = recursionBS(a, x, left , right, right_one);          //2.采用递归算法
    if (-1 == ret)
        cout << "查找失败" << endl;
    else {
        cout << "查找成功" << endl;
        cout << "查找元素的下标是:" << ret << endl;
    }
    //printf("ret:%d\n", ret);
    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值