1.基本思想
分治策略中合并排序(Merge Sort)算法的基本思想是将一个大的问题分解成两个或多个较小的子问题,分别解决这些子问题,然后将它们的解合并在一起以获得原始问题的解。合并排序特别适用于对大型数据集进行排序操作,其时间复杂度为O(n log n),其中n是要排序的元素数量。
2.以下是合并排序算法的基本步骤:
-
分解问题: 将要排序的数组分成两个大致相等的子数组。这一步是递归的,继续分解子数组,直到每个子数组只包含一个元素或为空。
-
解决子问题: 递归地对每个子数组进行排序。这是通过不断地将数组分解并排序来实现的,直到所有子数组都被排序。
-
合并结果: 将已排序的子数组合并在一起,以获得原始数组的排序结果。合并的过程涉及比较两个子数组的元素,并将它们按照升序或降序的方式合并。
3.下面是合并排序的详细步骤:
-
分解(Divide): 将原始数组分成两个子数组,通常是均分。这可以通过找到数组的中间点来实现。
-
递归排序(Conquer): 递归地对两个子数组进行排序。这是通过将每个子数组作为新的输入再次应用合并排序算法来实现的。
-
合并(Merge): 合并两个已排序的子数组以生成最终的排序数组。这涉及比较两个子数组的元素,选择最小(或最大)的元素并将其放入新数组,然后移动指针以继续比较和合并元素,直到两个子数组都被合并。
-
返回结果(Return): 最终,得到了原始数组的完全排序。
4.C++代码
#include<iostream>
using namespace std;
void merge(int arr[], int left, int mid, int right)
{
int i = left; //标记左半区第一个未排序的元素
int j = mid + 1; // 标记右半区第一个未排序的元素
int k = 0;
int d; //
int* temp = new int[right - left + 1];
//合并
while (i <= mid && j <= right)
{
if (arr[i] <= arr[j]) //左半区第一个剩余元素更小
temp[k++] = arr[i++]; //把元素存在临时数组里面
else // 右半区第一个剩余元素更小
temp[k++] = arr[j++];
}
while (j <= right) // 合并右半区剩余的元素
temp[k++] = arr[j++];
while (i <= mid) // 合并左半区剩余的元素
temp[k++] = arr[i++];
for (i = left, k = 0; i <= right; i++, k++) // 把临时数组中合并后的元素复制回原来的数组
arr[i] = temp[k];
delete[]temp; //删除临时数组
}
//归并排序
void mergeSort(int arr[], int left, int right)
{
// 如果只有一个元素,那么不需要继续划分
// 只有一个元素的区域,本生就是有序的,只需要被归并即可
if (left < right)
{
int mid = (left + right) / 2; //找中间点
mergeSort(arr, left, mid); //递归划分左半区
mergeSort(arr, mid + 1, right); // 递归划分右半区
merge(arr, left, mid, right); // 合并已经排序的部分
}
}
int main()
{
int arr[] = { 2,6,3,7,4,6,23,67,4,6,78,34,56,23,1 }; //要排序的数组
int num = sizeof(arr) / sizeof(arr[0]); //统计数组中元素的个数
cout << "数组中元素个数为:" << num << endl;
cout << "打印数组中元素:";
for (int i = 0; i < num; i++)
cout << arr[i] << " ";
cout << endl;
mergeSort(arr, 0, num - 1);
cout << "打印排序后的元素:";
for (int i = 0; i < num; i++)
cout << arr[i] << " ";
return 0;
}