CRT、EX-CRT & Lucas、Ex-Lucas

中国剩余定理

中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式。
现 在 有 方 程 组 : ( S ) : { x ≡ a 1 ( m o d   m 1 ) x ≡ a 2 ( m o d   m 2 )      .      .      . x ≡ a n ( m o d   m n ) 中 国 剩 余 定 理 指 出 : 若 ∀ i , j , 1 ≤ i &lt; j ≤ n , i , j ∈ Z , 都 有 g c d ( m i , m j ) = 1 , 则 对 任 意 整 数 : a 1 , a 2 , . . . , a n , 方 程 组 ( S ) 均 有 解 , 且 通 解 可 以 用 如 下 方 法 构 造 。 设 M = ∏ i = 1 n m i , 并 设 M i = M m i , ∀ i ∈ { 1 , 2 , . . . , n } , 设 t i = M i − 1 ( m o d   m i ) , 则 方 程 通 解 为 : x = k M + ∑ i = 1 n a i t i M i , k ∈ Z 。 \begin{aligned} &amp;现在有方程组:\\ &amp;(S):\begin{cases} x\equiv a_1(mod\space m_1)\\ x\equiv a_2(mod\space m_2)\\ \space\space\space\space. \\ \space\space\space\space. \\ \space\space\space\space. \\ x\equiv a_n(mod\space m_n)\\ \end{cases}\\ &amp;中国剩余定理指出:若\forall i,j,1\le i&lt;j\le n,i,j\in Z,都有gcd(m_i,m_j)=1,\\ &amp;则对任意整数:a_1,a_2,...,a_n,方程组(S)均有解,且通解可以用如下方法构造。\\ &amp;设M=\prod_{i=1}^n m_i,并设M_i={M\over m_i},\forall i\in\{1,2,...,n\},\\ &amp;设t_i=M_i^{-1}(mod\space m_i),则方程通解为:x=kM+\sum_{i=1}^n a_it_iM_i,k\in Z。\\ \end{aligned} (S):xa1(mod m1)xa2(mod m2)    .    .    .xan(mod mn)i,j1i<jni,jZgcd(mi,mj)=1a1,a2,...,an(S)M=i=1nmiMi=miMi{1,2,...,n}ti=Mi1(mod mi)x=kM+i=1naitiMikZ
下面给出解的正确性证明:
∵ 对 ∀ i , j , 1 ≤ i &lt; j ≤ n , i , j ∈ Z , g c d ( m i , m j ) = 1 ∴ g c d ( m i , M i ) = 1 说 明 ∃ t i , 使 得 t i M i ≡ 1 ( m o d   m i ) 又 a i t i M i ≡ a i ⋅ 1 ≡ a i ( m o d   m i ) , 且 对 ∀ i , j ∈ { 1 , 2 , . . . , n } , i ≠ j , a i t i M i ≡ 0 ( m o d   m j ) ∴ 对 ∀ i ∈ { 1 , 2 , . . , n } , x 0 = ∑ j = 1 n a j t j M j = a i t i M i + ∑ j = 1 , j ≠ i n a j t j M j ≡ a i t i M i + ∑ j = 1 , j ≠ i n 0 ( m o d   m i ) 说 明 x 0 是 方 程 组 的 一 个 解 假 设 x 1 , x 2 都 是 方 程 组 的 解 , 那 么 ∀ i ∈ { 1 , 2 , . . , n } , x 1 − x 2 ≡ 0 ( m o d   m i ) 又 对 ∀ i , j , 1 ≤ i &lt; j ≤ n , i , j ∈ Z , g c d ( m i , m j ) = 1 , ∴ ( x 1 − x 2 ) % M = ( x 1 − x 2 ) % ( ∏ i = 1 n m i ) = 0 ∴ ∃ k ∈ Z , x 1 − x 2 = k M , ∴ 方 程 通 解 为 : x = k M + ∑ i = 1 n a i t i M i , k ∈ Z \begin{aligned} &amp;∵对\forall i,j,1\le i&lt;j\le n,i,j\in Z,gcd(m_i,m_j)=1∴gcd(m_i,M_i)=1 \\ &amp;说明\exist t_i,使得t_iM_i\equiv1(mod\space m_i)\\ &amp;又a_it_iM_i\equiv a_i\cdot1\equiv a_i(mod\space m_i),且对\forall i,j\in\{1,2,...,n\},i\ne j,a_it_iM_i\equiv0(mod\space m_j)\\ &amp;∴对\forall i\in\{1,2,..,n\},x_0=\sum_{j=1}^n a_jt_jM_j=a_it_iM_i+\sum_{j=1,j\ne i}^n a_jt_jM_j\equiv a_it_iM_i+\sum_{j=1,j\ne i}^n0(mod\space m_i)\\ &amp;说明x_0是方程组的一个解\\ &amp;假设x_1,x_2都是方程组的解,那么\forall i\in \{1,2,..,n\},x_1-x_2\equiv0(mod\space m_i)\\ &amp;又对\forall i,j,1\le i&lt;j\le n,i,j\in Z,gcd(m_i,m_j)=1,∴(x_1-x_2)\%M=(x_1-x_2)\%(\prod_{i=1}^n m_i)=0\\ &amp;∴\exist k\in Z,x_1-x_2=kM,∴方程通解为:x=kM+\sum_{i=1}^n a_it_iM_i,k\in Z \end{aligned} i,j1i<jni,jZgcd(mi,mj)=1gcd(mi,Mi)=1ti使tiMi1(mod mi)aitiMiai1ai(mod mi)i,j{1,2,...,n}i̸=jaitiMi0(mod mj)i{1,2,..,n}x0=j=1najtjMj=aitiMi+j=1,j̸=inajtjMjaitiMi+j=1,j̸=in0(mod mi)x0x1,x2i{1,2,..,n}x1x20(mod mi)i,j1i<jni,jZgcd(mi,mj)=1(x1x2)%M=(x1x2)%(i=1nmi)=0kZx1x2=kMx=kM+i=1naitiMikZ

扩展中国剩余定理

在一般情况下,要求任两个数互质这个条件太苛刻了,CRT派不上用场,我们需要一个更具普遍性的结论,这就是EX-CRT。虽然是称为EX-CRT,但这个定理并没有直接用到CRT的结论。
我 们 单 独 考 虑 方 程 组 的 前 两 个 式 子 组 成 的 同 余 方 程 组 S ′ : { x ≡ a 1 ( m o d   m 1 ) x ≡ a 2 ( m o d   m 2 ) 我 们 设 整 数 K 1 , K 2 满 足 x = K 1 m 1 + a 1 , x = K 2 m 2 + a 2 , 那 么 有 K 1 m 1 + a 1 = K 2 m 2 + a 2 , 即 m 1 K 1 − m 2 K 2 = a 2 − a 1 , 根 据 E X G C D , 方 程 在 g c d ( m 1 , m 2 ) ∣ ( a 2 − a 1 ) 时 有 解 把 由 E X G C D 求 得 的 特 解 记 为 k 1 , k 2 , 设 S ’ 的 一 个 解 为 x 0 , 那 么 有 : { x 0 = a 1 + k 1 × a 2 − a 1 g c d ( m 1 , m 2 ) × m 1 x 0 = a 2 + k 2 × a 2 − a 1 g c d ( m 1 , m 2 ) × m 2 这 样 我 们 就 得 到 了 S ′ 的 一 个 解 x 0 , 怎 么 求 出 它 的 通 解 呢 ? \begin{aligned} &amp;我们单独考虑方程组的前两个式子组成的同余方程组S&#x27;:\\ &amp;\begin{cases} x\equiv a_1(mod\space m_1)\\ x\equiv a_2(mod\space m_2)\\ \end{cases}\\ &amp;我们设整数K_1,K_2满足x=K_1m_1+a_1,x=K_2m_2+a_2,那么有K_1m_1+a_1=K_2m_2+a_2,\\ &amp;即m_1K_1-m_2K_2=a_2-a_1,根据EXGCD,方程在gcd(m_1,m_2)|(a_2-a_1)时有解\\ &amp;把由EXGCD求得的特解记为k_1,k_2,设S’的一个解为x_0,那么有:\\ &amp;\begin{cases} x_0=a_1+k_1\times{a_2-a_1\over gcd(m_1,m_2)}\times m_1\\ x_0=a_2+k_2\times{a_2-a_1\over gcd(m_1,m_2)}\times m_2\\ \end{cases}\\ &amp;这样我们就得到了S&#x27;的一个解x_0,怎么求出它的通解呢?\\ \end{aligned} S{xa1(mod m1)xa2(mod m2)K1,K2x=K1m1+a1,x=K2m2+a2K1m1+a1=K2m2+a2m1K1m2K2=a2a1EXGCDgcd(m1,m2)(a2a1)EXGCDk1,k2Sx0{x0=a1+k1×gcd(m1,m2)a2a1×m1x0=a2+k2×gcd(m1,m2)a2a1×m2Sx0


假 设 S ′ 存 在 两 个 解 x 1 , x 2 ( x 1 &lt; x 2 ) , 由 于 x 1 , x 2 均 满 足 S ′ , 则 : ∃ σ 1 , σ 2 ∈ Z , 满 足 : { x 2 = x 1 + σ 1 × m 1 x 2 = x 1 + σ 2 × m 2 显 然 σ 1 × m 1 = σ 2 × m 2 , 设 d = g c d ( m 1 , m 2 ) , n 1 = m 1 d , n 2 = m 2 d 那 么 上 式 ⇔ σ 1 × n 1 d = σ 2 × n 2 d ⇔ σ 1 × n 1 = σ 2 × n 2   ∴ n 1 ∣ ( σ 2 × n 2 ) 又 由 定 义 可 知 , g c d ( n 1 , n 2 ) = 1   ∴ n 1 ∣ σ 2 , 也 即 ( n 1 n 2 ) ∣ ( σ 2 × n 2 ) → ( n 1 × n 2 d ) ∣ ( σ 2 × n 2 d ) → ( n 1 × n 2 d ) ∣ ( σ 2 × m 2 ) → ( n 1 × n 2 d ) ∣ ( x 2 − x 1 ) ( 由 x 2 = x 1 + σ 2 × m 2 可 得 ) n 1 × n 2 d = n 1 d × n 2 d d = m 1 m 2 g c d ( m 1 , m 2 ) = l c m ( m 1 , m 2 ) 由 此 我 们 得 到 了 S ’ 任 两 解 之 间 的 关 系 : l c m ( m 1 , m 2 ) ∣ ( x 2 − x 1 ) \begin{aligned} &amp;假设S&#x27;存在两个解x_1,x_2(x_1&lt;x_2),由于x_1,x_2均满足S&#x27;,则:\\ &amp;\exist \sigma_1,\sigma_2\in Z,满足: \begin{cases} x_2=x_1+\sigma_1\times m_1\\ x_2=x_1+\sigma_2\times m_2\\ \end{cases}\\ &amp;显然\sigma_1\times m_1=\sigma_2\times m_2,设d=gcd(m_1,m_2),n_1={m_1\over d},n_2={m_2\over d}\\ &amp;那么上式\Lrarr \sigma_1\times n_1d=\sigma_2\times n_2d\Lrarr \sigma_1\times n_1=\sigma_2\times n_2\space∴n_1|(\sigma_2\times n_2)\\ &amp;又由定义可知,gcd(n_1,n_2)=1\space ∴n_1|\sigma_2,也即(n_1n_2)|(\sigma_2\times n_2)\rarr (n_1\times n_2d)|(\sigma_2\times n_2d)\\ &amp;\rarr (n_1\times n_2d)|(\sigma_2\times m_2)\rarr (n_1\times n_2d)|(x_2-x_1)(由x_2=x_1+\sigma_2\times m_2可得)\\ &amp;n_1\times n_2d={n_1d\times n_2d\over d}={m_1m_2\over gcd(m_1,m_2)}=lcm(m_1,m_2)\\ &amp;由此我们得到了S’任两解之间的关系:lcm(m_1,m_2)|(x_2-x_1)\\ \end{aligned} Sx1,x2(x1<x2)x1,x2Sσ1,σ2Z{x2=x1+σ1×m1x2=x1+σ2×m2σ1×m1=σ2×m2d=gcd(m1,m2),n1=dm1,n2=dm2σ1×n1d=σ2×n2dσ1×n1=σ2×n2 n1(σ2×n2)gcd(n1,n2)=1 n1σ2(n1n2)(σ2×n2)(n1×n2d)(σ2×n2d)(n1×n2d)(σ2×m2)(n1×n2d)(x2x1)(x2=x1+σ2×m2)n1×n2d=dn1d×n2d=gcd(m1,m2)m1m2=lcm(m1,m2)Slcm(m1,m2)(x2x1)


由 解 的 关 系 有 x 2 = x 1 + k ⋅ l c m ( m 1 , m 2 ) , k ∈ Z , 结 合 之 前 得 到 的 特 解 x 0 , 可 以 得 出 S ′ 的 通 解 X : X = x 0 + k ⋅ l c m ( m 1 , m 2 ) , k ∈ Z 上 式 又 可 以 写 成 X ≡ x 0 ( m o d   l c m ( m 1 , m 2 ) ) , 这 样 , 我 们 就 把 S ′ 转 化 为 了 一 条 同 余 式 对 于 n 条 同 余 式 , 只 需 逐 条 合 并 即 可 。 \begin{aligned} &amp;由解的关系有x_2=x_1+k\cdot lcm(m_1,m_2),k\in Z,结合之前得到的特解x_0,可以得出S&#x27;的通解X:\\ &amp;X=x_0+k\cdot lcm(m_1,m_2),k\in Z\\ &amp;上式又可以写成X\equiv x_0(mod\space lcm(m_1,m_2)),这样,我们就把S&#x27;转化为了一条同余式\\ &amp;对于n条同余式,只需逐条合并即可。 \end{aligned} x2=x1+klcm(m1,m2)kZx0SXX=x0+klcm(m1,m2)kZXx0(mod lcm(m1,m2))Sn

代码如下:

typedef long long ll;
const int maxn = 111;

// m为模数组,a为余数数组,0~n-1
ll m[maxn], a[maxn];

ll exgcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1; y = 0;
        return a;
    }
    ll ans = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return ans;
}

ll excrt() {
    ll lcm = m[0], last_a = a[0];
    for(int i = 1; i < n; i++) {
        ll lcm_a = ((a[i] - last_a) % m[i] + m[i]) % m[i];
        ll k = lcm, x, y;
        ll gcd = exgcd(lcm, m[i], x, y);
        ll mod = m[i] / gcd;
        x = (x * lcm_a / gcd % mod + mod) % mod;
        lcm = lcm / gcd * m[i], last_a = (last_a + k * x) % lcm;
    }
    return (last_a % lcm + lcm) % lcm;
}

卢卡斯定理

卢卡斯定理是关于组合数和同余的定理,它表明当p为素数时:
C n m = ∏ i = 0 k C n i m i ( m o d   p ) 其 中 , m = m k p k + m k − 1 p k − 1 + . . . + m 1 p + m 0 n = n k p k + n k − 1 p k − 1 + . . . + n 1 p + n 0 即 m i , n i 为 m , n 的 p 进 制 展 开 中 对 应 次 数 为 i 的 系 数 C_n^m=\prod_{i=0}^k C_{n_i}^{m_i}(mod\space p)\\ 其中,m=m_kp^k+m_{k-1}p^{k-1}+...+m_1p+m_0\\ n=n_kp^k+n_{k-1}p^{k-1}+...+n_1p+n_0\\ 即m_i,n_i为m,n的p进制展开中对应次数为i的系数\\ Cnm=i=0kCnimi(mod p)m=mkpk+mk1pk1+...+m1p+m0n=nkpk+nk1pk1+...+n1p+n0mi,nim,npi
因为当m>n时,二项式系数为0,那么二项式系数即组合数能被p整除等价于在p进制下,存在某一位m的数值大于对应的n的数值。

基于母函数可以简单证明这个定理。
∵ 无 论 p 是 质 数 还 是 合 数 , 对 ∀ i ∈ N , 0 &lt; i &lt; p , 都 有 C p i = p ! i ! ( p − i ) ! ∴ 在 母 函 数 中 , 对 于 素 数 p , ( 1 + x ) p ≡ 1 + x p ( m o d   p ) 运 用 数 学 归 纳 法 可 以 得 到 , 对 ∀ i ∈ N , ( 1 + x ) p i ≡ 1 + x p i ( m o d   p ) 又 对 ∀ t ∈ N 以 及 素 数 p , 把 t 表 示 为 p 进 制 数 有 : t = ∑ i = 0 k t i p i 那 么 , 把 m , n 都 用 p 进 制 表 示 , 有      ∑ m = 0 n ( C n m ⋅ x m ) = ( 1 + x ) n = ∏ i = 0 k [ ( 1 + x ) p i ] m i ≡ ∏ i = 0 k ( 1 + x p i ) m i = ∏ i = 0 k ( ∑ m i = 0 n i C n i m i ⋅ x m i p i ) = ∏ i = 0 k ( ∑ m i = 0 p − 1 C n i m i ⋅ x m i p i ) = ∑ m = 0 n [ ( ∏ i = 0 k C n i m i ) ⋅ x m ] ( m o d   p ) \begin{aligned} &amp;∵无论p是质数还是合数,对\forall i\in N,0&lt;i&lt;p,都有C_p^i={p!\over i!(p-i)!}\\ &amp;∴在母函数中,对于素数p,(1+x)^p\equiv1+x^p(mod\space p)\\ &amp;运用数学归纳法可以得到,对\forall i\in N,(1+x)^{p^i} \equiv1+x^{p^i} (mod\space p)\\ &amp;又对\forall t\in N以及素数p,把t表示为p进制数有:t=\sum_{i=0}^kt_ip^i\\ &amp;那么,把m,n都用p进制表示,有\\ &amp;\space\space\space\space\sum_{m=0}^n\left(C_n^m\cdot x^m\right)\\ &amp;=(1+x)^n=\prod_{i=0}^k\left[(1+x)^{p^i}\right]^{m_i}\\ &amp;\equiv\prod_{i=0}^k\left(1+x^{p^i}\right)^{m_i} =\prod_{i=0}^k\left(\sum_{m_i=0}^{n_i}C_{n_i}^{m_i}\cdot x^{m_ip^i}\right)\\ &amp;=\prod_{i=0}^k\left(\sum_{m_i=0}^{p-1}C_{n_i}^{m_i}\cdot x^{m_ip^i}\right) =\sum_{m=0}^n\left[\left(\prod_{i=0}^kC_{n_i}^{m_i}\right)\cdot x^m\right] (mod\space p) \end{aligned} piN,0<i<pCpi=i!(pi)!p!p(1+x)p1+xp(mod p)iN(1+x)pi1+xpi(mod p)tNptpt=i=0ktipim,np    m=0n(Cnmxm)=(1+x)n=i=0k[(1+x)pi]mii=0k(1+xpi)mi=i=0k(mi=0niCnimixmipi)=i=0k(mi=0p1Cnimixmipi)=m=0n[(i=0kCnimi)xm](mod p)
代码如下:

typedef long long ll;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 100;

void init() {
	F[0] = 1;
	for(int i = 2; i < maxn; i++)
		F[i] = i * F[i - 1] % mod;
}

ll qpow(ll a, ll b) {
	ll ans = 1;
	while(b) {
		if(b & 1) ans = ans * a % mod;
		b >>= 1; a = a * a % mod;
	}
	return ans;
}

ll lucas(ll N, ll M) {
	ll ans = 1;
	while(N & M) {
		ll n = N % mod, m = M % mod;
		if(n < m) return 0;
		ans = ans * F[a] % mod * qpow(F[m] * F[n - m] % mod, mod - 2) % mod;
		N /= p; M /= p;
	}
	return ans;
}

扩展卢卡斯定理

卢卡斯定理同样不能处理模数不是素数的情况,这时便需要扩展卢卡斯定理。我们一步步分析如何求解模数不是素数的组合数问题。

代码和推导部分参考了这篇博客
首 先 , 我 们 要 解 决 的 问 题 是 求 C n m % p , 其 中 p 不 一 定 是 素 数 。 对 于 非 素 数 , 我 们 首 先 会 联 想 到 质 因 分 解 后 结 合 C R T 解 决 问 题 。 假 设 分 解 得 到 t 个 质 数 , 质 数 p i 对 应 的 个 数 为 k i , 对 p 质 因 分 解 有 p = ∏ i = 1 t p i k i 。 显 然 对 ∀ i , j , 1 ≤ i &lt; j ≤ t , g c d ( p i k i , p j k j ) = 1 , 假 设 对 ∀ i ∈ [ 1 , t ] , 我 们 求 出 了 a i = C n m % p i k i , 那 么 我 们 可 以 得 到 同 余 方 程 组 S : S : { C n m ≡ a 1 ( m o d   p 1 k 1 ) C n m ≡ a 2 ( m o d   p 2 k 2 )         .         .         . C n m ≡ a t ( m o d   p t k t ) 这 时 我 们 便 可 以 套 用 C R T 解 决 问 题 , 那 么 问 题 便 转 化 为 如 何 求 解 C n m % p i k i 。 \begin{aligned} &amp;首先,我们要解决的问题是求C_n^m\%p,其中p不一定是素数。\\ &amp;对于非素数,我们首先会联想到质因分解后结合CRT解决问题。\\ &amp;假设分解得到t个质数,质数p_i对应的个数为k_i,对p质因分解有p=\prod_{i=1}^tp_i^{k_i}。\\ &amp;显然对\forall i,j,1\le i&lt;j\le t,gcd(p_i^{k_i},p_j^{k_j})=1,假设对\forall i\in[1,t],我们求出了a_i=C_n^m\%p_i^{k_i},\\ &amp;那么我们可以得到同余方程组S:\\ &amp;S:\begin{cases} C_n^m\equiv a_1(mod\space p_1^{k_1})\\ C_n^m\equiv a_2(mod\space p_2^{k_2})\\ \space\space\space\space\space\space\space.\\ \space\space\space\space\space\space\space.\\ \space\space\space\space\space\space\space.\\ C_n^m\equiv a_t(mod\space p_t^{k_t})\\ \end{cases}\\ &amp;这时我们便可以套用CRT解决问题,那么问题便转化为如何求解C_n^m\%p_i^{k_i}。 \end{aligned} Cnm%ppCRTtpikipp=i=1tpikii,j1i<jtgcd(piki,pjkj)=1i[1,t]ai=Cnm%pikiSSCnma1(mod p1k1)Cnma2(mod p2k2)       .       .       .Cnmat(mod ptkt)便CRT便Cnm%piki


现 在 我 们 要 求 的 是 C n m % p k , 其 中 p 是 素 数 。 又 C n m = n ! m ! ( n − m ) ! , 显 然 需 要 求 出 m ! 和 ( n − m ) ! 关 于 模 p k 的 逆 元 , 但 考 虑 到 这 些 项 中 可 能 包 含 p ( 含 有 p 则 不 互 质 , 逆 元 不 存 在 ) , 所 以 需 要 先 提 取 p , 得 到 : C n m = n ! p k n m ! p k m ⋅ ( n − m ) ! p k n − m × p k n − k m − k n − m , 这 里 的 阶 乘 是 指 提 取 之 后 的 结 果 。 这 时 就 可 以 计 算 m ! p k m 和 ( n − m ) ! p k n − m 关 于 p k 的 逆 元 了 。 这 里 , 为 了 形 式 的 统 一 , 同 时 提 取 了 n ! 中 的 p 。 那 么 , 问 题 又 转 化 为 了 如 何 求 n ! % p k 。 \begin{aligned} &amp;现在我们要求的是C_n^m\%p^k,其中p是素数。\\ &amp;又C_n^m={n!\over m!(n-m)!},显然需要求出m!和(n-m)!关于模p^k的逆元,\\ &amp;但考虑到这些项中可能包含p(含有p则不互质,逆元不存在),所以需要先提取p,\\ &amp;得到:C_n^m={{n!\over p^{k_n}}\over{m!\over p^{k_m}}\cdot{(n-m)!\over p^{k_{n-m}}}}\times p^{k_n-k_m-k_{n-m}},这里的阶乘是指提取之后的结果。\\ &amp;这时就可以计算{m!\over p^{k_m}}和{(n-m)!\over p^{k_{n-m}}}关于p^k的逆元了。\\ &amp;这里,为了形式的统一,同时提取了n!中的p。那么,问题又转化为了如何求n!\%p^k。 \end{aligned} Cnm%pkpCnm=m!(nm)!n!m!(nm)!pkpppCnm=pkmm!pknm(nm)!pknn!×pknkmknmpkmm!pknm(nm)!pkn!pn!%pk


目 标 : 计 算 n ! % p k , p 为 质 数 。 上 一 步 中 提 到 , 我 们 需 要 先 提 取 p 。 提 取 结 果 为 : n ! = p ⌊ n p ⌋ × ⌊ n p ⌋ ! × ∏ i = 1 , i % p ≠ 0 n i 。 第 一 部 分 很 好 理 解 , 对 于 每 一 个 p 的 倍 数 , 都 可 以 提 取 出 一 个 p , 一 共 有 ⌊ n p ⌋ 个 ; 第 二 部 分 为 p 的 倍 数 被 提 取 p 之 后 余 下 的 , 是 一 个 阶 乘 的 形 式 。 显 然 在 n ! 中 , 对 于 p 的 幂 , p 的 个 数 不 止 1 个 , 也 就 是 说 第 二 部 分 仍 然 需 要 提 取 , 这 一 部 分 可 以 递 归 解 决 。 第 三 部 分 是 n ! 剔 除 了 p 的 倍 数 之 后 余 下 的 。 ∵ 对 ∀ i &lt; p k , t ∈ N , 都 有 i ≡ ( i + t ⋅ p k ) ( m o d   p k ) ∴ 对 ∀ t ∈ N , ∏ i = 1 , i % p ≠ 0 p k i ≡ ∏ i = 1 , i % p ≠ 0 p k ( i + t ⋅ p k ) ( m o d   p k ) 这 也 就 是 说 , 第 三 部 分 其 实 是 存 在 循 环 节 的 , ∏ i = 1 , i % p ≠ 0 p k i 一 共 循 环 了 ⌊ n p k ⌋ 次 。 除 去 循 环 节 的 余 项 长 度 在 p k 之 内 , 直 接 累 乘 即 可 。 \begin{aligned} &amp;目标:计算n!\%p^k,p为质数。上一步中提到,我们需要先提取p。\\ &amp;提取结果为:n!=p^{\lfloor{n\over p}\rfloor}\times {\lfloor{n\over p}\rfloor}!\times \prod_{i=1,i\%p\ne 0}^ni。\\ &amp;第一部分很好理解,对于每一个p的倍数,都可以提取出一个p,一共有{\lfloor{n\over p}\rfloor}个;\\ &amp;第二部分为p的倍数被提取p之后余下的,是一个阶乘的形式。显然在n!中,\\ &amp;对于p的幂,p的个数不止1个,也就是说第二部分仍然需要提取,这一部分可以递归解决。\\ &amp;第三部分是n!剔除了p的倍数之后余下的。\\ &amp;∵对\forall i&lt;p^k,t\in N,都有i\equiv(i+t\cdot p^k)(mod\space p^k)\\ &amp;∴对\forall t\in N,\prod_{i=1,i\%p\ne 0}^{p^k}i\equiv\prod_{i=1,i\%p\ne 0}^{p^k}(i+t\cdot p^k)(mod\space p^k)\\ &amp;这也就是说,第三部分其实是存在循环节的,\prod_{i=1,i\%p\ne 0}^{p^k}i一共循环了\lfloor{n\over p^k}\rfloor次。\\ &amp;除去循环节的余项长度在p^k之内,直接累乘即可。\\ \end{aligned} n!%pkppn!=ppn×pn!×i=1,i%p̸=0nipppnppn!pp1n!pi<pktNi(i+tpk)(mod pk)tNi=1,i%p̸=0pkii=1,i%p̸=0pk(i+tpk)(mod pk)i=1,i%p̸=0pkipknpk

完整代码如下:

typedef long long ll;
const int N = 1e6 + 100;

ll n, m, p;

ll qpow(ll a, ll b, ll mod) {
	ll ans = 1;
	while(b) {
		if(b & 1) ans = ans * a % mod;
		b >>= 1; a = a * a % mod;
	}
	return ans;
}

ll fac(ll n, ll p, ll pk) {
    if (!n) return 1;
    ll ans = 1;
    for (int i = 1; i < pk; i++)
        if (i % p) ans = ans * i % pk;
    ans = qpow(ans, n / pk, pk);
    int npk = n % pk;
    for (int i = 1; i <= npk; i++)
        if (i % p) ans = ans * i % pk;
    return ans * fac(n / p, p, pk) % pk;
}

ll exgcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1; y = 0;
        return a;
    }
    ll ans = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return ans;
}

ll inv(ll a, ll p) {
    if(!a) return 0;
    int x, y;
    exgcd(a, p, x, y);
    return (x % p + p) % p;
}

ll C(ll n, ll m, ll p, ll pk) {
    if (n < m) return 0;
    ll fn = fac(n, p, pk),
       fm = fac(m, p, pk),
       fn_m = fac(n - m, p, pk),
       cnt = 0;
    for (ll i = n; i; i /= p)
        cnt += i / p;
    for (ll i = m; i; i /= p)
        cnt -= i / p;
    for (ll i = n - m; i; i /= p)
        cnt -= i / p;
    return fn * inv(fm * fn_m % pk, pk) % pk * qpow(p, cnt, pk) % pk;
}

ll a[N], mod[N]; // a[]是通过卢卡斯分解出来的组合数值,m[]是对应的模数
int cnt; // 质因数的种数

ll CRT() {
    ll M = 1, ans = 0;
    for (int i = 0; i < cnt; i++)
        M *= mod[i];
    for (int i = 0; i < cnt; i++)
        ans = (ans + a[i] * (M / mod[i]) % M * inv(M / mod[i], mod[i]) % M) % M;
    return ans;
}

ll exlucas(ll n, ll m, ll p) {
    ll sqrtp = sqrt(p + 0.5);
    for (int i = 2; p > 1 && i <= sqrtp; i++) {
        ll pk = 1;
        while (p % i == 0)
            p /= i, pk *= i;
        if (pk > 1)
            a[cnt] = C(n, m, i, pk), mod[cnt++] = pk;
    }
    if (p > 1)
        a[cnt] = C(n, m, p, p), mod[cnt++] = p;
    return CRT();
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值