BZOJ2142 礼物 [扩展lucas定理]

13 篇文章 0 订阅

2142: 礼物

Time Limit: 10 Sec   Memory Limit: 259 MB
Submit: 1820   Solved: 764
[ Submit][ Status][ Discuss]

Description

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E

心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人
,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某
个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

Input

输入的第一行包含一个正整数P,表示模;
第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;
以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

Output

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

Sample Input

100
4 2
1
2

Sample Output

12
【样例说明】
下面是对样例1的说明。
以“/”分割,“/”前后分别表示送给第一个人和第二个人的礼物编号。12种方案详情如下:
1/23 1/24 1/34
2/13 2/14 2/34
3/12 3/14 3/24
4/12 4/13 4/23
【数据规模和约定】
设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。
对于100%的数据,1≤n≤109,1≤m≤5,1≤pi^ci≤10^5。

HINT

Source

思考

终于学了扩展lucas定理,感觉对组合数有了更深的认识。
解决n>10^9,p<=1e5时用这个方法挺好的。
想清楚后感觉code的实现挺暴力的。
核心并不是放在利用CRT合并形如 Cmn 这样的式子上。
对于 Cmn 来说真正重要的不是怎么求(那么多种方法。。。),而是解决p不是质数上。
p=pciipcjj...pckk ,
考虑拆分法则:
我们现在可以利用CRT合并:

Cminibi(modpcii)

Cmjnjbj(modpcjj)

.......

Cmknkbk(modpckk)

这样的式子,那么扩展卢卡斯的解决范围也就确定了!
解决形如:
Cminibi(modpcii) 的式子。
考虑到 Cmn=n!m!(nm)! ,只要我们能够分别计算出……即形如: x!bi(modpki) 的式子即可。
可知: n! 中质因子p的个数x的公式为 x=np+np2+np3+...
递推式也可以写为 f(n)=f(np2)+np2
又因为 n! 可表示为:
n!=123...n=(123...n(i(x0(modp))))(pnp)(12...np)

(pnp)(12...np) 在下有模 pk 的循环节。
于是乎,暴力提取 m!n!(nm)! 中质因子pi并消去,求出逆元inv后再全部乘回去。
参考代码

#include<bits/stdc++.h>
using namespace std;
int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}
void ex_gcd(int a,int b,int &x,int &y){
    if(b==0){x=1;y=0;return ;}
    ex_gcd(b,a%b,x,y);
    int t=x;x=y;y=t-a/b*x;
}
int pow_mod(long long x,long long y,long long p){
    long long ret=1;
    while(y){
        if(y&1)ret=(ret*x)%p;
        x=(x*x)%p;y>>=1;
    }
    return ret;
}
int inv(int a,int p){
    if(!a)return 0;
    int x=0,y=0;
    ex_gcd(a,p,x,y);
    x=(x%p+p)%p;
    return x==0?p:x;
}
int Mul(int n,int pi,int pk){
    if(!n)return 1;
    long long ret=1;
    for(register int i=2;i<=pk;i++)if(i%pi)ret=ret*i%pk;
    ret=pow_mod(ret,n/pk,pk);
    for(register int i=2;i<=n%pk;i++)if(i%pi)ret=ret*i%pk;
    return ret*Mul(n/pi,pi,pk)%pk;  
}
int C(int n,int m,int p,long long pi,long long pk){
    if(m>n)return 0;
    long long a=Mul(n,pi,pk),b=Mul(m,pi,pk),c=Mul(n-m,pi,pk);
    long long k=0,ret;
    for(register int i=n;i;i/=pi)k+=i/pi;
    for(register int i=m;i;i/=pi)k-=i/pi;
    for(register int i=n-m;i;i/=pi)k-=i/pi;
    ret=a*inv(b,pk)%pk*inv(c,pk)%pk*pow_mod(pi,k,pk)%pk;
    return (int)(ret*(p/pk)%p*inv(p/pk,pk)%p);
}
int p,n,m,d,w[30],M;
long long ans=1,sum;
int main(){
    scanf("%d%d%d",&p,&n,&m);
    for(register int i=1;i<=m;i++)
        scanf("%d",&w[i]),sum+=w[i];
    if(sum>n)return puts("Impossible"),0;
    for(register long long P,ret,i=1;i<=m;i++){
        n-=w[i-1],P=p,ret=0;
        for(register int j=2;j*j<=P;j++){
            if(P%j==0){
                int px=1;
                while(P%j==0)px*=j,P/=j;
                ret=(ret+(C(n,w[i],p,j,px))%p)%p;
            }
        }
        if(P>1)ret=(ret+(C(n,w[i],p,P,P))%p)%p;
        ans=ans*ret%p;
    }
    printf("%lld",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值