拓扑排序

一、简介

       对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。

通俗来讲,将一个有向无环图变成树性结构,由根节点到叶子节点输出。

 

二、算法步骤

in[] 数组用来记录每个顶点的入读为多少,dir[ i ][ j ] 用来表示有一条有向边从 i 指向 j 

  1. 按字典序从前往后遍历所有入度为0的顶点,删除这个节点,然后放入输出序列中
  2. 将这个顶点的所有边都删除,同时使其所有的邻接点的入度减一
  3. 重复步骤1~2,直到找不到入读为0的顶点或图的所有顶点都被删除

 

四、实现

1、数组实现

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int n,in[1000];//记录每个顶点的入度 
int dir[1000][1000];//记录边 
void toposort()
{
	for(int i=1; i<=n; i++)
	for(int j=1; j<=n; j++)
	if(!in[j])  //如果入度为0(没有前驱点)
	{
		in[j]=-1;  //入度变成-1进行标记(入度为-1的点均为已经删除的点)
		cout<<j;
		for(int k=1;k<=n;k++) //将与j相连的节点都删去(删除与j有关的边)
		if(dir[j][k]) in[k]--; 
						
		break;   
	}
}

 

2、队列优化

#include<bits/stdc++.h>
#define M 505
using namespace std;
int  in[M],n,m;
bool dir[M][M];
vector<int>  V;//输出序列 
priority_queue<int,vector<int>,greater<int> > Q;//从小到大的优先队列 
void toposort()
{
	for(int i=1;i<=n;i++)//将所有入度为0的顶点放入序列 
	if(!in[i]) Q.push(i);
	
	while(!Q.empty())
	{
		int x=Q.top(); Q.pop();
		V.push_back(x);
		
		for(int i=1;i<=n;i++)//删除所有与x顶点有关的边 
		if(dir[x][i])
		{
			in[i]--;//邻接点入度减一 
			if(!in[i])
			Q.push(i);
		}
	}
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值