一、简介
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
通俗来讲,将一个有向无环图变成树性结构,由根节点到叶子节点输出。
二、算法步骤
in[] 数组用来记录每个顶点的入读为多少,dir[ i ][ j ] 用来表示有一条有向边从 i 指向 j
- 按字典序从前往后遍历所有入度为0的顶点,删除这个节点,然后放入输出序列中
- 将这个顶点的所有边都删除,同时使其所有的邻接点的入度减一
- 重复步骤1~2,直到找不到入读为0的顶点或图的所有顶点都被删除
四、实现
1、数组实现
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int n,in[1000];//记录每个顶点的入度
int dir[1000][1000];//记录边
void toposort()
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
if(!in[j]) //如果入度为0(没有前驱点)
{
in[j]=-1; //入度变成-1进行标记(入度为-1的点均为已经删除的点)
cout<<j;
for(int k=1;k<=n;k++) //将与j相连的节点都删去(删除与j有关的边)
if(dir[j][k]) in[k]--;
break;
}
}
2、队列优化
#include<bits/stdc++.h>
#define M 505
using namespace std;
int in[M],n,m;
bool dir[M][M];
vector<int> V;//输出序列
priority_queue<int,vector<int>,greater<int> > Q;//从小到大的优先队列
void toposort()
{
for(int i=1;i<=n;i++)//将所有入度为0的顶点放入序列
if(!in[i]) Q.push(i);
while(!Q.empty())
{
int x=Q.top(); Q.pop();
V.push_back(x);
for(int i=1;i<=n;i++)//删除所有与x顶点有关的边
if(dir[x][i])
{
in[i]--;//邻接点入度减一
if(!in[i])
Q.push(i);
}
}
}