爬取前程无忧存入数据库进行数据分析和可视化绘制词云图

本文介绍了如何爬取前程无忧网站的职位信息,包括职位名称、薪资、招聘单位等,并将数据存储到MongoDB数据库。接着进行了数据分析和可视化,制作了词云图。注意,由于网站更新防爬策略,该教程可能已无法直接应用。
摘要由CSDN通过智能技术生成

爬取前程无忧网站

爬虫基本思路
获取数据在网页的位置----编写防爬-----启动数据库保存数据

本次教程使用的是mongodb数据库(MySQL)原理差不多,自己百度吧
ps:本次测试日期是2020/7/4 后面因为网站更新防爬措施无法实现功能本教程不背锅!

1、具体要求:职位名称、薪资水平、招聘单位、工作地点、工作经验、学历要求、工作内容(岗位职责)、任职要求(技能要求)。
spider文件代码

# -*- coding: utf-8 -*-
import scrapy
import re
from ..items import QianchengwuyouItem


class WuyouSpider(scrapy.Spider):
    name = 'wuyou'
    allowed_domains = ['jobs.51job.com']
    start_urls = ['http://jobs.51job.com/']

    def parse_details(selfm, response):
        # 获取详情页面数据
        print("=" * 100)
        print(response.url)
        item = QianchengwuyouItem()
        # 职位名称
        item["Job_title"] = response.xpath("//div[@class='cn']/h1/text()").extract_first()
        # 薪资水平
        item["Pay_level"] = response.xpath("//div[@class='cn']/strong/text()").extract_first()
        # 招聘单位
        item["Recruitment_unit"] = response.xpath("//div[@class='cn']//a[1]/text()").extract_first()
        # 工作地点 + 工作经验 + 学历要求....都在//div[@class='cn']/p[2]中
        item["Workplace"] = response.xpath("//div[@class='cn']/p[2]/text()[1]").get().replace('\xa0','')
        # 工作经验 + 学历要求
        all = response.xpath("//div[@class='cn']/p[2]/text()[2]").get().replace('\xa0','')
        # 判断工作经验是否存在
        if len(all) >= 4:
            item["hands_background"] = all
            item["Education_requirements"] = response.xpath("//div[@class='cn']/p[2]/text()[3]").get().replace('\xa0','')
            if len(item["Education_requirements"]) != 2:
                item["Education_requirements"] = None
        elif len(all) < 4:
            item["hands_background"] = None
            item["Education_requirements"] = all
            if len(item["Education_requirements"]) != 2:
                item["Education_requirements"] = None
            # .get().replace('\xa0','')
        # item["Workplace"] = item["Workplace"].get(1)
        # # 学历要求
        # item["Education_requirements"] = response.xpath("//div[@class='cn']/p[2]/text()[3]").get().replace('\xa0','')
        # 职位信息包含(工作内容+任职要求+工作经验+学历要求)
        item["Career_information"] = response.xpath("//div[@class='bmsg job_msg inbox']/p/text()").extract()
        item["Career_information"] = [i.strip() for i in item["Career_information"]]
        item["Career_information"] = [i for i in item["Career_information"] if len(i) > 0]
        item["Career_information"] = " ".join(item["Career_information"]).replace("\xa0","").replace(",",",")
        if (item["Pay_level"]) is None:
            item["Pay_level"] = "无"
        # 关键字:keyword
        item["keyword"] = response.xpath("//div[@class='mt10']//p//a/text()").extract()
        yield item

    def industry_perse(self, response):
        # # 获取该行业下所有职业链接
        # all_list = response.xpath("//div[@class='detlist gbox']")
        # # 获取全部招聘职位下的所有职业(occupation)链接
        # for a in all_list:
        #     occupation_url = a.xpath(".//span/a/@href").extract_first()
        #     yield scrapy.Request(
        #         occupation_url,
        #         callback=self.parse_details
        #     )
        # 获取当前页面所有职业所在的div
        all_list = response.xpath("//div[@class='detlist gbox']//div")
        # 计算当前页面获取多少url
        url_num = 0
        # 遍历获取大数据行业下的所有职业(occupation)链接
        for a in all_list:
            occupation_url = a.xpath("./p/span/a/@href").extract_first()
            yield scrapy
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值