用mplfinance库定制A股常用的K线、均线图


近日需要使用 matplotlibfinance库来绘制K线图及均线,但是 finance库已经停止更新了,查询后得知 finance库已经从 matplotlib中独立出来,新库名为 mpl_finance,但此库在使用中会出现弃用警告,查询官方文档后得知由一个更新的 mplfinance库替代(注意中间没有下划线或横线!)。更新后的 mplfinance库较以往更加简单易用,增加了很多新功能(renko砖形图、volume柱形图、ohlc图等),且支持多种风格,可定制多种颜色(因为国外K线图颜色与国内相反,容易产生误导),线条(默认线条较粗,影响观感)等。鉴于目前介绍 mplfinance库的中文文档匮乏,下面介绍相关用法,以供参考。

官方文档及项目的GitHub地址:
pypi主页
GitHub项目地址
项目源码、官方文档及示例ipynb文件(已上传至百度云,方便下载,提取码:481m)

安装mplfinance库(Windows 10)

安装mplfinance库要求pandasmatplotlib

pip install mplfinance --upgrade --user -i https://pypi.tuna.tsinghua.edu.cn/simple

导入

import mplfinance as mpf

废话不多说,直接上代码。。

示例代码

import mplfinance as mpf
import matplotlib as mpl# 用于设置曲线参数
from cycler import cycler# 用于定制线条颜色
import pandas as pd# 导入DataFrame数据
import matplotlib.pyplot as plt


def import_csv(stock_code):
	# 导入股票数据
    df = pd.read_csv(stock_code + '.csv')
    # 格式化列名,用于之后的绘制
    df.rename(
            columns={
            'date': 'Date', 'open': 'Open', 
            'high': 'High', 'low': 'Low', 
            'close': 'Close', 'volume': 'Volume'}, 
            inplace=True)
    # 转换为日期格式
    df['Date'] = pd.to_datetime(df['Date'])
    # 将日期列作为行索引
    df.set_index(['Date'], inplace=True)
    return df

# 导入数据
symbol = 'sh600519'
period = 100
df = import_csv(symbol)[-period:]

# 设置基本参数
# type:绘制图形的类型,有candle, renko, ohlc, line等
# 此处选择candle,即K线图
# mav(moving average):均线类型,此处设置7,30,60日线
# volume:布尔类型,设置是否显示成交量,默认False
# title:设置标题
# y_label:设置纵轴主标题
# y_label_lower:设置成交量图一栏的标题
# figratio:设置图形纵横比
# figscale:设置图形尺寸(数值越大图像质量越高)
kwargs = dict(
	type='candle', 
	mav=(7, 30, 60), 
	volume=True, 
	title='\nA_stock %s candle_line' % (symbol),    
	ylabel='OHLC Candles', 
	ylabel_lower='Shares\nTraded Volume', 
	figratio=(15, 10), 
	figscale=5)

# 设置marketcolors
# up:设置K线线柱颜色,up意为收盘价大于等于开盘价
# down:与up相反,这样设置与国内K线颜色标准相符
# edge:K线线柱边缘颜色(i代表继承自up和down的颜色),下同。详见官方文档)
# wick:灯芯(上下影线)颜色
# volume:成交量直方图的颜色
# inherit:是否继承,选填
mc = mpf.make_marketcolors(
	up='red', 
	down='green', 
	edge='i', 
	wick='i', 
	volume='in', 
	inherit=True)
	
# 设置图形风格
# gridaxis:设置网格线位置
# gridstyle:设置网格线线型
# y_on_right:设置y轴位置是否在右
s = mpf.make_mpf_style(
	gridaxis='both', 
	gridstyle='-.', 
	y_on_right=False, 
	marketcolors=mc)
	
# 设置均线颜色,配色表可见下图
# 建议设置较深的颜色且与红色、绿色形成对比
# 此处设置七条均线的颜色,也可应用默认设置
mpl.rcParams['axes.prop_cycle'] = cycler(
    color=['dodgerblue', 'deeppink', 
    'navy', 'teal', 'maroon', 'darkorange', 
    'indigo'])
    
# 设置线宽
mpl.rcParams['lines.linewidth'] = .5

# 图形绘制
# show_nontrading:是否显示非交易日,默认False
# savefig:导出图片,填写文件名及后缀
mpf.plot(df, 
	**kwargs, 
	style=s, 
	show_nontrading=False,
	savefig='A_stock-%s %s_candle_line'
	 % (symbol, period) + '.jpg')
plt.show()

效果展示(此处设置了较大的图片尺寸,导致字体变小。。)

配色表图片引用自finthon.com/matplotlib-color-list/

matplotlib配色表

总结

示例代码介绍了一些常用参数及配置,基本包含K线绘制的所有内容。图例等内容与matplotlib库使用方法相同,不作赘述。

了解更多请见网盘的example文件夹,包含官方的jupyter notebook详解。
本人第一次写csdn文章,若出现错误请多多包涵。如果有帮助就点个赞吧!


2020.4.9更新, 运行代码时不显示图像,在代码后加plt.show()即可(import matplotlib.pyplot as plt )。

推荐阅读

本人的其他有关文章,感兴趣的朋友可以看看。

Python绘制MACD指标图

Python绘制BOLL布林线指标图

Python绘制RSI相对强弱指标图

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值