最小公倍数一些性质定理及证明

写在前面

最近在学习抽象代数,里面的一些定理的证明需要很多初等数论的知识,而本人没上过数论,就只能自学了。下面总结一些置换群的相关定理证明时候需要的数论内容,主要涉及最小公倍数、最大公因数等概念的重要性质。关于整数互素的概念与性质定理我在前面的文章中总结过,有兴趣的朋友可以看下面的两篇文章:

预备定义

  • 公倍数:两个或多个整数的公有的倍数,称为它们的公倍数。
  • 最小公倍数(Least Common Multiple, lcm):除 0 0 0以外最小的一个公倍数,叫做这几个整数的最小公倍数,通常记为 [ a 1 ,   a 2 ,   ⋯   ,   a n ] [a_1,\,a_2,\,\cdots,\,a_n] [a1,a2,,an]
  • 公因数:两个或多个整数的公有的因数,称为它们的公因数。
  • 最大公因数(Greatest Common Divisor, gcd):几个数的任意一个公因数都能整除 d d d,那么称 d d d是这几个数的最大公因数,通常记为 ( a 1 ,   a 2 ,   ⋯   ,   a n ) (a_1,\,a_2,\,\cdots,\,a_n) (a1,a2,,an)

主要定理

下面总结一下关于最小公倍数的两个定理。

★ \bigstar [ a , b ] × ( a , b ) = a b [a,b]\times(a,b)=ab [a,b]×(a,b)=ab

证明:

设由于 a b ab ab a ,   b a,\,b a,b的公倍数,而 [ a ,   b ] [a,\,b] [a,b] a ,   b a,\,b a,b的最小公倍数,所以 [ a ,   b ]   ∣   a b [a,\,b]\,\big|\,ab [a,b] ab,所以 ∃   q ∈ Z \exists\ q\in\mathbb{Z}  qZ,使得 a b = q [ a ,   b ] ab=q[a,\,b] ab=q[a,b],下面需要证 q q q a ,   b a,\,b a,b的最大公因数,为此需要证 q q q满足以下两个条件:

  • q q q a ,   b a,\,b a,b的公因数;
  • a ,   b a,\,b a,b的任一公因数 c c c,有 c   ∣   q c\,|\,q cq
  1. 对条件一,因为 a b = q [ a ,   b ] ab=q[a,\,b] ab=q[a,b],所以 a = [ a ,   b ] b ⋅ q ,    b = [ a ,   b ] a ⋅ q {a}=\dfrac{[a,\,b]}{b}\cdot q,\ \ {b}=\dfrac{[a,\,b]}{a}\cdot q a=b[a,b]q,  b=a[a,b]q,而显然 a   ∣   [ a ,   b ] ,   b   ∣   [ a ,   b ] a\,\big|\,[a,\,b],\ b\,\big|\,[a,\,b] a [a,b], b [a,b],于是有:

q   ∣   a ,   q   ∣   b q\,|\,a,\ q\,|\,b qa, qb,这就得到 q q q a ,   b a,\,b a,b的公因数。

  1. 对条件二,由于 c   ∣   a ,   c   ∣   b c\,|\,a,\ c\,|\,b ca, cb,所以 a c ,   b c \dfrac{a}{c},\,\dfrac{b}{c} ca,cb均为整数。设
    t = a b c = a ( b c ) = b ( a c ) , t=\frac{ab}c=a\left(\frac bc\right)=b\left(\frac ac\right), t=cab=a(cb)=b(ca),
    由此得到 t t t a ,   b a,\,b a,b的公倍数,于是 [ a ,   b ]   ∣   t [a,\,b]\,\big|\,t [a,b] t,根据上式 a b = q [ a ,   b ] ab=q[a,\,b] ab=q[a,b],有
    t [ a ,   b ] = a b c a b q = q c , \frac{t}{[a,\,b]}=\dfrac{\frac{ab}{c}}{\frac{ab}{q}}=\frac{q}{c}, [a,b]t=qabcab=cq,
    即得到 q c \dfrac qc cq为整数,即 c   ∣   q c\,|\,q cq

综上,可得到 [ a , b ] × ( a , b ) = a b [a,b]\times(a,b)=ab [a,b]×(a,b)=ab

推广

类似地,可以将结论推广到更加一般的情况,即
[ a 1 ,   ⋯   ,   a n ] × ( a 1 ,   ⋯   ,   a n ) = ∏ i = 1 n a i . [a_1,\,\cdots,\,a_n]\times(a_1,\,\cdots,\,a_n)=\prod_{i=1}^na_i. [a1,,an]×(a1,,an)=i=1nai.

★ \bigstar a   ∣   t , b   ∣   t ⟹   [ a ,   b ]   ∣   t a\,|\,t,b\,|\,t\Longrightarrow\,[a,\,b]\,|\,t at,bt[a,b]t

证明:

要证明整除关系,自然想到应用带余除法,只需要证明余数为 0 0 0即可。


t = [ a , b ] × q + r , q ∈ Z ,   0 ⩽ r < [ a ,   b ] , t=[a,b]\times q+r,\quad q\in\mathbb{Z},\ 0\leqslant r<[a,\,b], t=[a,b]×q+r,qZ, 0r<[a,b],
则由于 a   ∣   [ a ,   b ] ,   a   ∣   t a\,|\,[a,\,b],\,a\,|\,t a[a,b],at,根据《与素数有关的一些性质及证明(一)》中关于整除的性质:"除数整除被除数的倍数和"得到: a   ∣   t + ( − q ) × [ a ,   b ] ⟹ a   ∣   r a\,\big|\,t+(-q)\times[a,\,b]\Longrightarrow a\,|\,r a t+(q)×[a,b]ar,同理可得 b   ∣   r b\,|\,r br,因此得到 r r r a ,   b a,\,b a,b的公倍数,但是根据带余除法的条件: 0 ⩽ r < [ a ,   b ] 0\leqslant r<[a,\,b] 0r<[a,b] r r r小于 a ,   b a,\,b a,b的最小公倍数,所以 r r r只能取 0 0 0,这就证明了 [ a ,   b ]   ∣   t [a,\,b]\,|\,t [a,b]t

P.S. 这个定理的证明有很多种方法,这里仅介绍常见的一种,也可以从唯一素因子分解定理出发进行证明,其步骤比较直观,在此不详述。

推广

根据定理的证明,很容易将其推广到任意整数的情形,即
a i   ∣   t ,   ( i = 1 ,   2 ,   ⋯   ,   n ) ⟹   [ a 1 ,   a 2 ,   ⋯   ,   a n ]   ∣   t . a_i\,|\,t,\,(i=1,\,2,\,\cdots,\,n)\Longrightarrow\,[a_1,\,a_2,\,\cdots,\,a_n]\,|\,t. ait,(i=1,2,,n)[a1,a2,,an]t.

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值