问题引入
考虑问题: f ( x ) = x n − 1 ∈ F [ x ] f(x)=x^n-1\in F[x] f(x)=xn−1∈F[x], E E E为 F F F关于 f f f的分裂域, 则 G f = Gal ( E / F ) = ? G_f=\text{Gal}(E/F)=? Gf=Gal(E/F)=?
研究思路
假设 x n − 1 = ( x − α 1 ) ⋯ ( x − α n ) , α i ∈ E x^n-1=(x-\alpha_1)\cdots(x-\alpha_n),\alpha_i\in E xn−1=(x−α1)⋯(x−αn),αi∈E, 则
-
α i \alpha_i αi两两不同,
方程没有重根, ∵ ( f ( x ) , f ′ ( x ) ) = ( x n − 1 , n x n − 1 ) = 1 \because (f(x),f'(x))=(x^n-1,nx^{n-1})=1 ∵(f(x),f′(x))=(xn−1,nxn−1)=1.
-
x n − 1 x^n-1 xn−1可约, x n − 1 = ( x − 1 ) ( x n − 1 + ⋯ + 1 ) x^n-1=(x-1)(x^{n-1}+\cdots+1) xn−1=(x−1)(xn−1+⋯+1).
-
G = ( { α 1 , ⋯ , α n } , ∘ ) G=(\{\alpha_1,\cdots,\alpha_n\},\circ) G=({α1,⋯,αn},∘)是 ( E ∗ , ∘ ) (E^*,\circ) (E∗,∘)的子群( E ∗ E^* E∗表示 E E E的所有非零元, G G G是 n n n阶交换群)
只需证明 ∀ α i , α j ∈ G \forall \alpha_i,\alpha_j\in G ∀αi,αj∈G, 有 α i α j ∈ G \alpha_i\alpha_j\in G αiαj∈G, 且 α i − 1 ∈ G \alpha_i^{-1}\in G αi−1∈G.(运算封闭, 存在逆元)
- α i ∈ G ⟺ α i n = 1 ⟺ ( α i − 1 ) n = 1 ⟺ α i − 1 ∈ G \alpha_i\in G\iff \alpha_i^n=1\iff (\alpha_i^{-1})^n=1\iff \alpha_i^{-1}\in G αi∈G⟺αin=1⟺(αi−1)n=1⟺αi−1∈G.
- α i ∈ G , α j ∈ G ⟺ α i n = α j n = 1 ⟺ ( α i α j ) n = 1 ⟺ α i α j ∈ G \alpha_i\in G,\alpha_j\in G\iff \alpha_i^n=\alpha_j^n=1\iff(\alpha_i\alpha_j)^n=1\iff \alpha_i\alpha_j\in G αi∈G,αj∈G⟺αin=αjn=1⟺(αiαj)n=1⟺αiαj∈G.
-
G ≅ Z / d 1 Z × ⋯ × Z / d s Z , ( d 1 ∣ d 2 , ⋯ , d s − 1 ∣ d s , d 1 ⋯ d s = n ) G\cong \mathbb{Z}/d_1\mathbb{Z}\times\cdots\times \mathbb{Z}/d_s\mathbb{Z},\ (d_1|d_2,\cdots,d_{s-1}|d_s,d_1\cdots d_s=n) G≅Z/d1Z×⋯×Z/dsZ, (d1∣d2,⋯,ds−1∣ds,d1⋯ds=n).
s = 1 s=1 s=1时, d s = n d_s=n ds=n, G G G为 n n n阶循环群 Z / n Z \mathbb{Z}/n\mathbb{Z} Z/nZ.
G G G中每个元素均为 d s d_s ds的因子, 即 g d s = 1 , ∀ g ∈ G g^{d_s}=1,\forall g\in G gds=1,∀g∈G, x d s = 1 x^{d_s}=1 xds=1在 E E E中至多有 d s d_s ds个根. -
G = ⟨ ξ ⟩ G=\langle\xi\rangle G=⟨ξ⟩, 生成元称为 n n n次本原单位根, 即 1 , ξ , ξ 2 , ⋯ , ξ n − 1 1,\xi,\xi^2,\cdots,\xi^{n-1} 1,ξ,ξ2,⋯,ξn−1为 n n n个根.
-
E = F ( ξ , ξ 2 , ⋯ , ξ n − 1 , 1 ) = F ( ξ ) E=F(\xi,\xi^2,\cdots,\xi^{n-1},1)=F(\xi) E=F(ξ,ξ2,⋯,ξn−1,1)=F(ξ), G f G_f Gf中任意元素 ρ \rho ρ:
ρ i : E = F ( ξ ) ⟶ E ( 域 同 构 ) ξ ⟼ ξ i ( ξ 在 F 上 的 极 小 多 项 式 p ( x ) 的 根 ) \begin{aligned} \rho_i:E=F(\xi)&\longrightarrow E(域同构)\\ \xi&\longmapsto \xi^i\ (\xi在F上的极小多项式p(x)的根) \end{aligned} ρi:E=F(ξ)ξ⟶E(域同构)⟼ξi (ξ在F上的极小多项式p(x)的根)
显然 p ( x ) ∣ x n − 1 p(x)|x^n-1 p(x)∣xn−1, p ( x ) = 0 p(x)=0 p(x)=0的根是 x n − 1 = 0 x^n-1=0 xn−1=0根的一部分, 所以可以写成 ξ i \xi^i ξi的形式. -
φ : G ⟶ ( ( Z / n Z ) ∗ , ∘ ) ρ i ⟼ i ˉ \begin{aligned} \varphi:G\longrightarrow&((\mathbb{Z}/n\mathbb{Z})^*,\circ)\\ \rho_i\longmapsto&\bar i \end{aligned} φ:G⟶ρi⟼((Z/nZ)∗,∘)iˉ
( Z / n Z ) ∗ (\mathbb{Z}/n\mathbb{Z})^* (Z/nZ)∗表示模 n n n剩余类中所有的乘法可逆元(与 n n n互素的因子),这样才关于乘法构成群.
如果 G G G中元素满足 ρ i ⋅ ρ j = ρ k \rho_i\cdot\rho_j=\rho_k ρi⋅ρj=ρk, 则 i ⋅ j = k i\cdot j=k i⋅j=k.
ρ i ⋅ ρ j ( ξ ) = ρ i ( ξ j ) = ( ρ i ( ξ ) ) j = ( ξ i ) j = ξ i ⋅ j = ρ i ⋅ j ( ξ ) \begin{aligned} \rho_i\cdot\rho_j(\xi)&=\rho_i(\xi^j)=\big(\rho_i(\xi)\big)^j\\ &=(\xi^i)^j=\xi^{i\cdot j}=\rho_{i\cdot j}(\xi) \end{aligned} ρi⋅ρj(ξ)=ρi(ξj)=(ρi(ξ))j=(ξi)j=ξi⋅j=ρi⋅j(ξ)
于是 i ⋅ j = k i\cdot j=k i⋅j=k.
综上, 有
G
f
≅
(
(
Z
/
n
Z
)
∗
,
∘
)
,
G_f\cong((\mathbb{Z}/n\mathbb{Z})^*,\circ),
Gf≅((Z/nZ)∗,∘),
分圆多项式
特别地,
-
F = C F=\mathbb{C} F=C, 极小多项式 deg p ( x ) = 1 \deg p(x)=1 degp(x)=1, G f = { id } G_f=\{\text{id}\} Gf={id}.
-
F = R F=\mathbb{R} F=R, 极小多项式 deg p ( x ) = 1 o r 2 \deg p(x)=1\ or\ 2 degp(x)=1 or 2,
( x − ξ ) ( x − ξ ˉ ) , ξ ˉ = ξ − 1 , G f = { { id } , n = 1 , 2 ⟨ − ⟩ = ⟨ − 1 ‾ ⟩ n ≥ 3 (x-\xi)(x-\bar \xi),\bar\xi=\xi^{-1}, \ G_f=\begin{cases}\{\text{id}\},&n=1,2\\\langle{}^-\rangle=\langle\overline{-1}\rangle&n\geq3\end{cases} (x−ξ)(x−ξˉ),ξˉ=ξ−1, Gf={{id},⟨−⟩=⟨−1⟩n=1,2n≥3 -
F = Q F=\mathbb{Q} F=Q, p ( x ) = Φ n ( x ) p(x)=\Phi_n(x) p(x)=Φn(x).
p ( x ) = Φ n ( x ) = ∏ ( i , n ) = 1 ( x − ξ i ) , p(x)=\Phi_n(x)=\prod_{(i,n)=1}(x-\xi^i), p(x)=Φn(x)=(i,n)=1∏(x−ξi),
研究分圆多项式在有理数域
Q
\mathbb{Q}
Q上的情况:
x
n
−
1
=
∏
d
∣
n
Φ
d
(
x
)
=
(
x
−
1
)
⋯
(
x
−
ξ
n
−
1
)
=
∏
i
=
0
n
−
1
(
x
−
ξ
i
)
=
∏
d
∣
n
∏
(
i
,
n
)
=
1
(
x
−
ξ
i
)
=
Φ
a
b
(
x
)
\begin{aligned} x^n-1&=\prod_{d|n}\Phi_d(x)\\ &=(x-1)\cdots(x-\xi^{n-1})=\prod_{i=0}^{n-1}(x-\xi^i)\\ &=\prod_{d|n}\prod_{(i,n)=1}(x-\xi^i)=\Phi_{\frac ab}(x) \end{aligned}
xn−1=d∣n∏Φd(x)=(x−1)⋯(x−ξn−1)=i=0∏n−1(x−ξi)=d∣n∏(i,n)=1∏(x−ξi)=Φba(x)
计算分圆多项式的例子:
例如: 当
n
=
10
n=10
n=10时,
x
10
−
1
=
Φ
1
(
x
)
Φ
2
(
x
)
Φ
5
(
x
)
Φ
10
(
x
)
.
x^{10}-1=\Phi_1(x)\Phi_2(x)\Phi_5(x)\Phi_{10}(x).
x10−1=Φ1(x)Φ2(x)Φ5(x)Φ10(x).
下面计算前几项分圆多项式:
Φ n ( x ) \Phi_n(x) Φn(x) | n n n | d d d |
---|---|---|
x − 1 x-1 x−1 | 1 1 1 | 1 1 1 |
x + 1 x+1 x+1 | 2 2 2 | 1 , 2 1,2 1,2 |
x 3 − 1 x − 1 = x 2 + x + 1 \dfrac{x^3-1}{x-1}=x^2+x+1 x−1x3−1=x2+x+1 | 3 3 3 | 1 , 3 1,3 1,3 |
x 2 + 1 x^2+1 x2+1 | 4 4 4 | 1 , 2 , 4 1,2,4 1,2,4 |
x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1 | 5 5 5 | 1 , 5 1,5 1,5 |
x 2 − x + 1 x^2-x+1 x2−x+1 | 6 6 6 | 1 , 2 , 3 , 6 1,2,3,6 1,2,3,6 |
求解17次方程
对于17次方程
x
17
−
1
=
0
x^{17}-1=0
x17−1=0, 由前面讨论,
G
f
≅
(
(
Z
/
17
Z
)
∗
,
∘
)
,
G_f\cong((\mathbb{Z}/17\mathbb{Z})^*,\circ),
Gf≅((Z/17Z)∗,∘),为一个16阶循环群,
G
f
≅
(
(
Z
/
17
Z
)
∗
,
∘
)
,
=
(
{
1
ˉ
,
2
ˉ
,
⋯
,
16
‾
}
,
∘
)
=
(
⟨
3
ˉ
⟩
,
∘
)
=
(
{
3
ˉ
,
3
ˉ
2
,
⋯
,
3
ˉ
15
,
1
ˉ
}
,
∘
)
\begin{aligned} G_f&\cong((\mathbb{Z}/17\mathbb{Z})^*,\circ),\\ &=\big(\{\bar1,\bar2,\cdots,\overline{16}\},\circ\big)\\ &=(\langle\bar3\rangle,\circ)=\big(\{\bar3,\bar3^2,\cdots,\bar{3}^{15},\bar1\},\circ\big) \end{aligned}
Gf≅((Z/17Z)∗,∘),=({1ˉ,2ˉ,⋯,16},∘)=(⟨3ˉ⟩,∘)=({3ˉ,3ˉ2,⋯,3ˉ15,1ˉ},∘)
(由于3与17互素, 所以可以作为生成元).
由此, 根据Galois理论, 得到:

其中, ⟨ 3 ˉ ⟩ \langle\bar3\rangle ⟨3ˉ⟩的阶数为 16 16 16, ⟨ 3 ˉ 2 ⟩ , ⟨ 3 ˉ 4 ⟩ , ⟨ 3 ˉ 8 ⟩ \langle\bar3^2\rangle,\langle\bar3^4\rangle,\langle\bar3^8\rangle ⟨3ˉ2⟩,⟨3ˉ4⟩,⟨3ˉ8⟩的阶数分别为 8 , 4 , 2 8,4,2 8,4,2.
取
E
=
Q
(
ξ
)
E=\mathbb{Q}(\xi)
E=Q(ξ),
ξ
\xi
ξ在
⟨
3
ˉ
2
⟩
\langle\bar3^2\rangle
⟨3ˉ2⟩作用下的轨道为:
ξ
9
,
ξ
13
,
ξ
15
,
ξ
16
,
ξ
8
,
ξ
4
,
ξ
2
,
ξ
,
\xi^9,\xi^{13},\xi^{15},\xi^{16},\xi^8,\xi^4,\xi^2,\xi,
ξ9,ξ13,ξ15,ξ16,ξ8,ξ4,ξ2,ξ,
嫌手算麻烦的话可以写个小程序来计算:
In [4]: for i in range(1, 9):
...: print(9**i%17)
...:
9
13
15
16
8
4
2
1
另一条轨道是
3
ˉ
⋅
⟨
3
ˉ
2
⟩
\bar3\cdot\langle\bar3^2\rangle
3ˉ⋅⟨3ˉ2⟩作用下得到的:
ξ
10
,
ξ
5
,
ξ
11
,
ξ
14
,
ξ
7
,
ξ
12
,
ξ
6
,
ξ
3
,
\xi^{10},\xi^{5},\xi^{11},\xi^{14},\xi^7,\xi^{12},\xi^6,\xi^3,
ξ10,ξ5,ξ11,ξ14,ξ7,ξ12,ξ6,ξ3,
同样地, 程序可以这样写:
In [5]: for i in range(1, 9):
...: print(3*9**i%17)
...:
10
5
11
14
7
12
6
3
分别记为:
{
α
=
ξ
9
+
ξ
13
+
ξ
15
+
ξ
16
+
ξ
8
+
ξ
4
+
ξ
2
+
ξ
α
′
=
ξ
10
+
ξ
5
+
ξ
11
+
ξ
14
+
ξ
7
+
ξ
12
+
ξ
6
+
ξ
3
\begin{cases} \alpha=\xi^9+\xi^{13}+\xi^{15}+\xi^{16}+\xi^8+\xi^4+\xi^2+\xi\\ \alpha'=\xi^{10}+\xi^{5}+\xi^{11}+\xi^{14}+\xi^7+\xi^{12}+\xi^6+\xi^3 \end{cases}
{α=ξ9+ξ13+ξ15+ξ16+ξ8+ξ4+ξ2+ξα′=ξ10+ξ5+ξ11+ξ14+ξ7+ξ12+ξ6+ξ3
于是可以得到:
{
α
+
α
′
=
−
1
=
ξ
+
ξ
2
+
⋯
+
ξ
16
α
⋅
α
′
=
−
4
=
4
(
ξ
+
ξ
2
+
⋯
+
ξ
16
)
\begin{cases} \alpha+\alpha'=-1=\xi+\xi^2+\cdots+\xi^{16}\\ \alpha\cdot\alpha'=-4=4(\xi+\xi^2+\cdots+\xi^{16}) \end{cases}
{α+α′=−1=ξ+ξ2+⋯+ξ16α⋅α′=−4=4(ξ+ξ2+⋯+ξ16)
- 第一个式子可以从根与系数的关系显然得到
- 第二个式子需要计算(可能还有更好的办法?凑成4组, 每组有16项)
然后从上面两个式子中可以得到:
x
2
+
x
−
4
=
0
,
⇒
α
,
α
′
=
−
1
±
17
2
,
x^2+x-4=0,\Rightarrow \alpha,\alpha'=\frac{-1\pm\sqrt{17}}2,
x2+x−4=0,⇒α,α′=2−1±17,
以此类推, 可以找到:
{
β
=
ξ
13
+
ξ
16
+
ξ
4
+
ξ
β
′
=
ξ
15
+
ξ
8
+
ξ
2
+
ξ
9
\begin{cases} \beta=\xi^{13}+\xi^{16}+\xi^4+\xi\\ \beta'=\xi^{15}+\xi^{8}+\xi^{2}+\xi^9 \end{cases}
{β=ξ13+ξ16+ξ4+ξβ′=ξ15+ξ8+ξ2+ξ9
然后得到:
{
β
+
β
′
=
α
β
⋅
β
′
=
ξ
+
ξ
2
+
⋯
+
ξ
16
=
−
1
\begin{cases} \beta+\beta'=\alpha\\ \beta\cdot\beta'=\xi+\xi^2+\cdots+\xi^{16}=-1 \end{cases}
{β+β′=αβ⋅β′=ξ+ξ2+⋯+ξ16=−1
得到:
x
2
−
α
x
−
1
=
0
⇒
β
,
β
′
=
α
±
α
2
+
4
2
,
x^2-\alpha x-1=0\Rightarrow \beta,\beta'=\frac{\alpha\pm\sqrt{\alpha^2+4}}2,
x2−αx−1=0⇒β,β′=2α±α2+4,
以及
γ
=
ξ
+
ξ
16
,
γ
′
=
3
ˉ
4
(
ξ
+
ξ
16
)
=
13
‾
(
ξ
+
ξ
16
)
=
ξ
13
+
ξ
4
\gamma=\xi+\xi^{16},\gamma'=\bar3^4(\xi+\xi^{16})=\overline{13}(\xi+\xi^{16})=\xi^{13}+\xi^{4}
γ=ξ+ξ16,γ′=3ˉ4(ξ+ξ16)=13(ξ+ξ16)=ξ13+ξ4
于是:
{
γ
+
γ
′
=
β
γ
⋅
γ
′
=
ξ
5
+
ξ
14
+
ξ
3
+
ξ
12
=
δ
\begin{cases} \gamma+\gamma'=\beta\\ \gamma\cdot\gamma'=\xi^{5}+\xi^{14}+\xi^3+\xi^{12}=\delta \end{cases}
{γ+γ′=βγ⋅γ′=ξ5+ξ14+ξ3+ξ12=δ
得到:
x
2
−
β
x
−
δ
=
0
,
⇒
γ
,
γ
′
=
β
±
β
2
+
4
δ
2
,
x^2-\beta x-\delta=0,\Rightarrow \gamma,\gamma'=\frac{\beta\pm\sqrt{\beta^2+4\delta}}{2},
x2−βx−δ=0,⇒γ,γ′=2β±β2+4δ,
其中 δ \delta δ满足:
x 2 − α ′ x − 1 = 0 , x^2-\alpha'x-1=0, x2−α′x−1=0,
因为 δ = ξ 5 + ξ 14 + ξ 3 + ξ 12 \delta=\xi^{5}+\xi^{14}+\xi^3+\xi^{12} δ=ξ5+ξ14+ξ3+ξ12, 而
δ ′ = 3 ˉ 2 δ = 3 ˉ 2 ( ξ 5 + ξ 14 + ξ 3 + ξ 12 ) = ξ 11 + ξ 7 + ξ 10 + ξ 6 , \delta'=\bar3^2\delta=\bar3^2(\xi^{5}+\xi^{14}+\xi^3+\xi^{12})=\xi^{11}+\xi^{7}+\xi^{10}+\xi^{6}, δ′=3ˉ2δ=3ˉ2(ξ5+ξ14+ξ3+ξ12)=ξ11+ξ7+ξ10+ξ6,
于是:
{ δ + δ ′ = α ′ δ ⋅ δ ′ = − 1 \begin{cases} \delta+\delta'=\alpha'\\ \delta\cdot\delta'=-1 \end{cases} {δ+δ′=α′δ⋅δ′=−1
由此我们得到了:
x 2 − α ′ x − 1 = 0 , ⇒ δ , δ ′ = α ′ ± α ′ 2 + 4 2 . x^2-\alpha' x-1=0,\Rightarrow \delta,\delta'=\frac{\alpha'\pm\sqrt{\alpha'^2+4}}2. x2−α′x−1=0,⇒δ,δ′=2α′±α′2+4.
于是通过求解一系列二次方程, 我们得到了十七次方程的根式解, 其中, 中间域分别为:
{
M
1
=
Q
(
α
)
M
2
=
Q
(
β
)
M
3
=
Q
(
γ
)
\begin{cases} M_1=\mathbb{Q}(\alpha)\\ M_2=\mathbb{Q}(\beta)\\ M_3=\mathbb{Q}(\gamma) \end{cases}
⎩⎪⎨⎪⎧M1=Q(α)M2=Q(β)M3=Q(γ)
如果取
ξ
=
cos
2
17
π
+
i
sin
2
17
π
\xi=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi
ξ=cos172π+isin172π, 则
γ
=
ξ
+
ξ
16
=
cos
2
17
π
+
i
sin
2
17
π
=
cos
2
17
π
+
i
sin
2
17
π
+
cos
32
17
π
+
i
sin
32
17
π
=
cos
2
17
π
+
i
sin
2
17
π
+
cos
2
17
π
−
i
sin
2
17
π
=
2
cos
2
17
π
\begin{aligned} \gamma&=\xi+\xi^{16}=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi\\ &=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi+\cos \frac{32}{17}\pi+\rm{i}\sin\frac{32}{17}\pi\\ &=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi+\cos \frac{2}{17}\pi-\rm{i}\sin\frac{2}{17}\pi\\ &=2\cos\frac2{17}\pi \end{aligned}
γ=ξ+ξ16=cos172π+isin172π=cos172π+isin172π+cos1732π+isin1732π=cos172π+isin172π+cos172π−isin172π=2cos172π
于是我们只要计算出
γ
\gamma
γ的值, 我们就可以通过尺规作图得到正十七边形. 但是高斯在群论发明出来之前已经得到了正十七边形的做法, 不得不说高斯是一位十分伟大的数学家.
附:
cos
2
17
π
=
−
1
16
+
1
16
17
+
1
16
34
−
2
17
+
1
8
17
+
3
17
−
34
−
2
17
−
2
34
+
2
17
,
\cos\frac2{17}\pi=-\frac1{16}+\frac1{16}\sqrt{17}+\frac1{16}\sqrt{34-2\sqrt{17}}+\frac18\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}},
cos172π=−161+16117+16134−217+8117+317−34−217−234+217,
有兴趣的话大家可以试试.