代数学笔记11: 分圆域,分圆多项式,求解17次方程

问题引入

考虑问题: f ( x ) = x n − 1 ∈ F [ x ] f(x)=x^n-1\in F[x] f(x)=xn1F[x], E E E F F F关于 f f f的分裂域, 则 G f = Gal ( E / F ) = ? G_f=\text{Gal}(E/F)=? Gf=Gal(E/F)=?

研究思路

假设 x n − 1 = ( x − α 1 ) ⋯ ( x − α n ) , α i ∈ E x^n-1=(x-\alpha_1)\cdots(x-\alpha_n),\alpha_i\in E xn1=(xα1)(xαn),αiE, 则

  • α i \alpha_i αi两两不同,

    方程没有重根, ∵ ( f ( x ) , f ′ ( x ) ) = ( x n − 1 , n x n − 1 ) = 1 \because (f(x),f'(x))=(x^n-1,nx^{n-1})=1 (f(x),f(x))=(xn1,nxn1)=1.

  • x n − 1 x^n-1 xn1可约, x n − 1 = ( x − 1 ) ( x n − 1 + ⋯ + 1 ) x^n-1=(x-1)(x^{n-1}+\cdots+1) xn1=(x1)(xn1++1).

  • G = ( { α 1 , ⋯   , α n } , ∘ ) G=(\{\alpha_1,\cdots,\alpha_n\},\circ) G=({α1,,αn},) ( E ∗ , ∘ ) (E^*,\circ) (E,)的子群( E ∗ E^* E表示 E E E的所有非零元, G G G n n n阶交换群)

    只需证明 ∀ α i , α j ∈ G \forall \alpha_i,\alpha_j\in G αi,αjG, 有 α i α j ∈ G \alpha_i\alpha_j\in G αiαjG, 且 α i − 1 ∈ G \alpha_i^{-1}\in G αi1G.(运算封闭, 存在逆元)

    • α i ∈ G    ⟺    α i n = 1    ⟺    ( α i − 1 ) n = 1    ⟺    α i − 1 ∈ G \alpha_i\in G\iff \alpha_i^n=1\iff (\alpha_i^{-1})^n=1\iff \alpha_i^{-1}\in G αiGαin=1(αi1)n=1αi1G.
    • α i ∈ G , α j ∈ G    ⟺    α i n = α j n = 1    ⟺    ( α i α j ) n = 1    ⟺    α i α j ∈ G \alpha_i\in G,\alpha_j\in G\iff \alpha_i^n=\alpha_j^n=1\iff(\alpha_i\alpha_j)^n=1\iff \alpha_i\alpha_j\in G αiG,αjGαin=αjn=1(αiαj)n=1αiαjG.
  • G ≅ Z / d 1 Z × ⋯ × Z / d s Z ,   ( d 1 ∣ d 2 , ⋯   , d s − 1 ∣ d s , d 1 ⋯ d s = n ) G\cong \mathbb{Z}/d_1\mathbb{Z}\times\cdots\times \mathbb{Z}/d_s\mathbb{Z},\ (d_1|d_2,\cdots,d_{s-1}|d_s,d_1\cdots d_s=n) GZ/d1Z××Z/dsZ, (d1d2,,ds1ds,d1ds=n).
    s = 1 s=1 s=1时, d s = n d_s=n ds=n, G G G n n n阶循环群 Z / n Z \mathbb{Z}/n\mathbb{Z} Z/nZ.
    G G G中每个元素均为 d s d_s ds的因子, 即 g d s = 1 , ∀ g ∈ G g^{d_s}=1,\forall g\in G gds=1,gG, x d s = 1 x^{d_s}=1 xds=1 E E E中至多有 d s d_s ds个根.

  • G = ⟨ ξ ⟩ G=\langle\xi\rangle G=ξ, 生成元称为 n n n次本原单位根, 即 1 , ξ , ξ 2 , ⋯   , ξ n − 1 1,\xi,\xi^2,\cdots,\xi^{n-1} 1,ξ,ξ2,,ξn1 n n n个根.

  • E = F ( ξ , ξ 2 , ⋯   , ξ n − 1 , 1 ) = F ( ξ ) E=F(\xi,\xi^2,\cdots,\xi^{n-1},1)=F(\xi) E=F(ξ,ξ2,,ξn1,1)=F(ξ), G f G_f Gf中任意元素 ρ \rho ρ:
    ρ i : E = F ( ξ ) ⟶ E ( 域 同 构 ) ξ ⟼ ξ i   ( ξ 在 F 上 的 极 小 多 项 式 p ( x ) 的 根 ) \begin{aligned} \rho_i:E=F(\xi)&\longrightarrow E(域同构)\\ \xi&\longmapsto \xi^i\ (\xi在F上的极小多项式p(x)的根) \end{aligned} ρi:E=F(ξ)ξE()ξi (ξFp(x))
    显然 p ( x ) ∣ x n − 1 p(x)|x^n-1 p(x)xn1, p ( x ) = 0 p(x)=0 p(x)=0的根是 x n − 1 = 0 x^n-1=0 xn1=0根的一部分, 所以可以写成 ξ i \xi^i ξi的形式.

  • φ : G ⟶ ( ( Z / n Z ) ∗ , ∘ ) ρ i ⟼ i ˉ \begin{aligned} \varphi:G\longrightarrow&((\mathbb{Z}/n\mathbb{Z})^*,\circ)\\ \rho_i\longmapsto&\bar i \end{aligned} φ:Gρi((Z/nZ),)iˉ

    ( Z / n Z ) ∗ (\mathbb{Z}/n\mathbb{Z})^* (Z/nZ)表示模 n n n剩余类中所有的乘法可逆元(与 n n n互素的因子),这样才关于乘法构成群.

    如果 G G G中元素满足 ρ i ⋅ ρ j = ρ k \rho_i\cdot\rho_j=\rho_k ρiρj=ρk, 则 i ⋅ j = k i\cdot j=k ij=k.

    ρ i ⋅ ρ j ( ξ ) = ρ i ( ξ j ) = ( ρ i ( ξ ) ) j = ( ξ i ) j = ξ i ⋅ j = ρ i ⋅ j ( ξ ) \begin{aligned} \rho_i\cdot\rho_j(\xi)&=\rho_i(\xi^j)=\big(\rho_i(\xi)\big)^j\\ &=(\xi^i)^j=\xi^{i\cdot j}=\rho_{i\cdot j}(\xi) \end{aligned} ρiρj(ξ)=ρi(ξj)=(ρi(ξ))j=(ξi)j=ξij=ρij(ξ)

    于是 i ⋅ j = k i\cdot j=k ij=k.

综上, 有
G f ≅ ( ( Z / n Z ) ∗ , ∘ ) , G_f\cong((\mathbb{Z}/n\mathbb{Z})^*,\circ), Gf((Z/nZ),),

分圆多项式

特别地,

  • F = C F=\mathbb{C} F=C, 极小多项式 deg ⁡ p ( x ) = 1 \deg p(x)=1 degp(x)=1, G f = { id } G_f=\{\text{id}\} Gf={id}.

  • F = R F=\mathbb{R} F=R, 极小多项式 deg ⁡ p ( x ) = 1   o r   2 \deg p(x)=1\ or\ 2 degp(x)=1 or 2,
    ( x − ξ ) ( x − ξ ˉ ) , ξ ˉ = ξ − 1 ,   G f = { { id } , n = 1 , 2 ⟨ − ⟩ = ⟨ − 1 ‾ ⟩ n ≥ 3 (x-\xi)(x-\bar \xi),\bar\xi=\xi^{-1}, \ G_f=\begin{cases}\{\text{id}\},&n=1,2\\\langle{}^-\rangle=\langle\overline{-1}\rangle&n\geq3\end{cases} (xξ)(xξˉ),ξˉ=ξ1, Gf={{id},=1n=1,2n3

  • F = Q F=\mathbb{Q} F=Q, p ( x ) = Φ n ( x ) p(x)=\Phi_n(x) p(x)=Φn(x).
    p ( x ) = Φ n ( x ) = ∏ ( i , n ) = 1 ( x − ξ i ) , p(x)=\Phi_n(x)=\prod_{(i,n)=1}(x-\xi^i), p(x)=Φn(x)=(i,n)=1(xξi),

研究分圆多项式在有理数域 Q \mathbb{Q} Q上的情况:
x n − 1 = ∏ d ∣ n Φ d ( x ) = ( x − 1 ) ⋯ ( x − ξ n − 1 ) = ∏ i = 0 n − 1 ( x − ξ i ) = ∏ d ∣ n ∏ ( i , n ) = 1 ( x − ξ i ) = Φ a b ( x ) \begin{aligned} x^n-1&=\prod_{d|n}\Phi_d(x)\\ &=(x-1)\cdots(x-\xi^{n-1})=\prod_{i=0}^{n-1}(x-\xi^i)\\ &=\prod_{d|n}\prod_{(i,n)=1}(x-\xi^i)=\Phi_{\frac ab}(x) \end{aligned} xn1=dnΦd(x)=(x1)(xξn1)=i=0n1(xξi)=dn(i,n)=1(xξi)=Φba(x)
计算分圆多项式的例子:

例如: 当 n = 10 n=10 n=10时,
x 10 − 1 = Φ 1 ( x ) Φ 2 ( x ) Φ 5 ( x ) Φ 10 ( x ) . x^{10}-1=\Phi_1(x)\Phi_2(x)\Phi_5(x)\Phi_{10}(x). x101=Φ1(x)Φ2(x)Φ5(x)Φ10(x).
下面计算前几项分圆多项式:

Φ n ( x ) \Phi_n(x) Φn(x) n n n d d d
x − 1 x-1 x1 1 1 1 1 1 1
x + 1 x+1 x+1 2 2 2 1 , 2 1,2 1,2
x 3 − 1 x − 1 = x 2 + x + 1 \dfrac{x^3-1}{x-1}=x^2+x+1 x1x31=x2+x+1 3 3 3 1 , 3 1,3 1,3
x 2 + 1 x^2+1 x2+1 4 4 4 1 , 2 , 4 1,2,4 1,2,4
x 4 + x 3 + x 2 + x + 1 x^4+x^3+x^2+x+1 x4+x3+x2+x+1 5 5 5 1 , 5 1,5 1,5
x 2 − x + 1 x^2-x+1 x2x+1 6 6 6 1 , 2 , 3 , 6 1,2,3,6 1,2,3,6

求解17次方程

对于17次方程 x 17 − 1 = 0 x^{17}-1=0 x171=0, 由前面讨论, G f ≅ ( ( Z / 17 Z ) ∗ , ∘ ) , G_f\cong((\mathbb{Z}/17\mathbb{Z})^*,\circ), Gf((Z/17Z),),为一个16阶循环群,
G f ≅ ( ( Z / 17 Z ) ∗ , ∘ ) , = ( { 1 ˉ , 2 ˉ , ⋯   , 16 ‾ } , ∘ ) = ( ⟨ 3 ˉ ⟩ , ∘ ) = ( { 3 ˉ , 3 ˉ 2 , ⋯   , 3 ˉ 15 , 1 ˉ } , ∘ ) \begin{aligned} G_f&\cong((\mathbb{Z}/17\mathbb{Z})^*,\circ),\\ &=\big(\{\bar1,\bar2,\cdots,\overline{16}\},\circ\big)\\ &=(\langle\bar3\rangle,\circ)=\big(\{\bar3,\bar3^2,\cdots,\bar{3}^{15},\bar1\},\circ\big) \end{aligned} Gf((Z/17Z),),=({1ˉ,2ˉ,,16},)=(3ˉ,)=({3ˉ,3ˉ2,,3ˉ15,1ˉ},)
(由于3与17互素, 所以可以作为生成元).

由此, 根据Galois理论, 得到:

其中, ⟨ 3 ˉ ⟩ \langle\bar3\rangle 3ˉ的阶数为 16 16 16, ⟨ 3 ˉ 2 ⟩ , ⟨ 3 ˉ 4 ⟩ , ⟨ 3 ˉ 8 ⟩ \langle\bar3^2\rangle,\langle\bar3^4\rangle,\langle\bar3^8\rangle 3ˉ2,3ˉ4,3ˉ8的阶数分别为 8 , 4 , 2 8,4,2 8,4,2.

E = Q ( ξ ) E=\mathbb{Q}(\xi) E=Q(ξ), ξ \xi ξ ⟨ 3 ˉ 2 ⟩ \langle\bar3^2\rangle 3ˉ2作用下的轨道为:
ξ 9 , ξ 13 , ξ 15 , ξ 16 , ξ 8 , ξ 4 , ξ 2 , ξ , \xi^9,\xi^{13},\xi^{15},\xi^{16},\xi^8,\xi^4,\xi^2,\xi, ξ9,ξ13,ξ15,ξ16,ξ8,ξ4,ξ2,ξ,
嫌手算麻烦的话可以写个小程序来计算:

In [4]: for i in range(1, 9):
   ...:     print(9**i%17)
   ...:
9
13
15
16
8
4
2
1

另一条轨道是 3 ˉ ⋅ ⟨ 3 ˉ 2 ⟩ \bar3\cdot\langle\bar3^2\rangle 3ˉ3ˉ2作用下得到的:
ξ 10 , ξ 5 , ξ 11 , ξ 14 , ξ 7 , ξ 12 , ξ 6 , ξ 3 , \xi^{10},\xi^{5},\xi^{11},\xi^{14},\xi^7,\xi^{12},\xi^6,\xi^3, ξ10,ξ5,ξ11,ξ14,ξ7,ξ12,ξ6,ξ3,
同样地, 程序可以这样写:

In [5]: for i in range(1, 9):
   ...:     print(3*9**i%17)
   ...:
10
5
11
14
7
12
6
3

分别记为:
{ α = ξ 9 + ξ 13 + ξ 15 + ξ 16 + ξ 8 + ξ 4 + ξ 2 + ξ α ′ = ξ 10 + ξ 5 + ξ 11 + ξ 14 + ξ 7 + ξ 12 + ξ 6 + ξ 3 \begin{cases} \alpha=\xi^9+\xi^{13}+\xi^{15}+\xi^{16}+\xi^8+\xi^4+\xi^2+\xi\\ \alpha'=\xi^{10}+\xi^{5}+\xi^{11}+\xi^{14}+\xi^7+\xi^{12}+\xi^6+\xi^3 \end{cases} {α=ξ9+ξ13+ξ15+ξ16+ξ8+ξ4+ξ2+ξα=ξ10+ξ5+ξ11+ξ14+ξ7+ξ12+ξ6+ξ3
于是可以得到:
{ α + α ′ = − 1 = ξ + ξ 2 + ⋯ + ξ 16 α ⋅ α ′ = − 4 = 4 ( ξ + ξ 2 + ⋯ + ξ 16 ) \begin{cases} \alpha+\alpha'=-1=\xi+\xi^2+\cdots+\xi^{16}\\ \alpha\cdot\alpha'=-4=4(\xi+\xi^2+\cdots+\xi^{16}) \end{cases} {α+α=1=ξ+ξ2++ξ16αα=4=4(ξ+ξ2++ξ16)

  • 第一个式子可以从根与系数的关系显然得到
  • 第二个式子需要计算(可能还有更好的办法?凑成4组, 每组有16项)

然后从上面两个式子中可以得到:
x 2 + x − 4 = 0 , ⇒ α , α ′ = − 1 ± 17 2 , x^2+x-4=0,\Rightarrow \alpha,\alpha'=\frac{-1\pm\sqrt{17}}2, x2+x4=0,α,α=21±17 ,

以此类推, 可以找到:
{ β = ξ 13 + ξ 16 + ξ 4 + ξ β ′ = ξ 15 + ξ 8 + ξ 2 + ξ 9 \begin{cases} \beta=\xi^{13}+\xi^{16}+\xi^4+\xi\\ \beta'=\xi^{15}+\xi^{8}+\xi^{2}+\xi^9 \end{cases} {β=ξ13+ξ16+ξ4+ξβ=ξ15+ξ8+ξ2+ξ9
然后得到:
{ β + β ′ = α β ⋅ β ′ = ξ + ξ 2 + ⋯ + ξ 16 = − 1 \begin{cases} \beta+\beta'=\alpha\\ \beta\cdot\beta'=\xi+\xi^2+\cdots+\xi^{16}=-1 \end{cases} {β+β=αββ=ξ+ξ2++ξ16=1
得到:
x 2 − α x − 1 = 0 ⇒ β , β ′ = α ± α 2 + 4 2 , x^2-\alpha x-1=0\Rightarrow \beta,\beta'=\frac{\alpha\pm\sqrt{\alpha^2+4}}2, x2αx1=0β,β=2α±α2+4 ,
以及
γ = ξ + ξ 16 , γ ′ = 3 ˉ 4 ( ξ + ξ 16 ) = 13 ‾ ( ξ + ξ 16 ) = ξ 13 + ξ 4 \gamma=\xi+\xi^{16},\gamma'=\bar3^4(\xi+\xi^{16})=\overline{13}(\xi+\xi^{16})=\xi^{13}+\xi^{4} γ=ξ+ξ16,γ=3ˉ4(ξ+ξ16)=13(ξ+ξ16)=ξ13+ξ4
于是:
{ γ + γ ′ = β γ ⋅ γ ′ = ξ 5 + ξ 14 + ξ 3 + ξ 12 = δ \begin{cases} \gamma+\gamma'=\beta\\ \gamma\cdot\gamma'=\xi^{5}+\xi^{14}+\xi^3+\xi^{12}=\delta \end{cases} {γ+γ=βγγ=ξ5+ξ14+ξ3+ξ12=δ
得到:
x 2 − β x − δ = 0 , ⇒ γ , γ ′ = β ± β 2 + 4 δ 2 , x^2-\beta x-\delta=0,\Rightarrow \gamma,\gamma'=\frac{\beta\pm\sqrt{\beta^2+4\delta}}{2}, x2βxδ=0,γ,γ=2β±β2+4δ ,

其中 δ \delta δ满足:
x 2 − α ′ x − 1 = 0 , x^2-\alpha'x-1=0, x2αx1=0,
因为 δ = ξ 5 + ξ 14 + ξ 3 + ξ 12 \delta=\xi^{5}+\xi^{14}+\xi^3+\xi^{12} δ=ξ5+ξ14+ξ3+ξ12, 而
δ ′ = 3 ˉ 2 δ = 3 ˉ 2 ( ξ 5 + ξ 14 + ξ 3 + ξ 12 ) = ξ 11 + ξ 7 + ξ 10 + ξ 6 , \delta'=\bar3^2\delta=\bar3^2(\xi^{5}+\xi^{14}+\xi^3+\xi^{12})=\xi^{11}+\xi^{7}+\xi^{10}+\xi^{6}, δ=3ˉ2δ=3ˉ2(ξ5+ξ14+ξ3+ξ12)=ξ11+ξ7+ξ10+ξ6,
于是:
{ δ + δ ′ = α ′ δ ⋅ δ ′ = − 1 \begin{cases} \delta+\delta'=\alpha'\\ \delta\cdot\delta'=-1 \end{cases} {δ+δ=αδδ=1
由此我们得到了:
x 2 − α ′ x − 1 = 0 , ⇒ δ , δ ′ = α ′ ± α ′ 2 + 4 2 . x^2-\alpha' x-1=0,\Rightarrow \delta,\delta'=\frac{\alpha'\pm\sqrt{\alpha'^2+4}}2. x2αx1=0,δ,δ=2α±α2+4 .

于是通过求解一系列二次方程, 我们得到了十七次方程的根式解, 其中, 中间域分别为:
{ M 1 = Q ( α ) M 2 = Q ( β ) M 3 = Q ( γ ) \begin{cases} M_1=\mathbb{Q}(\alpha)\\ M_2=\mathbb{Q}(\beta)\\ M_3=\mathbb{Q}(\gamma) \end{cases} M1=Q(α)M2=Q(β)M3=Q(γ)
如果取 ξ = cos ⁡ 2 17 π + i sin ⁡ 2 17 π \xi=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi ξ=cos172π+isin172π, 则
γ = ξ + ξ 16 = cos ⁡ 2 17 π + i sin ⁡ 2 17 π = cos ⁡ 2 17 π + i sin ⁡ 2 17 π + cos ⁡ 32 17 π + i sin ⁡ 32 17 π = cos ⁡ 2 17 π + i sin ⁡ 2 17 π + cos ⁡ 2 17 π − i sin ⁡ 2 17 π = 2 cos ⁡ 2 17 π \begin{aligned} \gamma&=\xi+\xi^{16}=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi\\ &=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi+\cos \frac{32}{17}\pi+\rm{i}\sin\frac{32}{17}\pi\\ &=\cos \frac2{17}\pi+\rm{i}\sin\frac2{17}\pi+\cos \frac{2}{17}\pi-\rm{i}\sin\frac{2}{17}\pi\\ &=2\cos\frac2{17}\pi \end{aligned} γ=ξ+ξ16=cos172π+isin172π=cos172π+isin172π+cos1732π+isin1732π=cos172π+isin172π+cos172πisin172π=2cos172π
于是我们只要计算出 γ \gamma γ的值, 我们就可以通过尺规作图得到正十七边形. 但是高斯在群论发明出来之前已经得到了正十七边形的做法, 不得不说高斯是一位十分伟大的数学家.

附:
cos ⁡ 2 17 π = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , \cos\frac2{17}\pi=-\frac1{16}+\frac1{16}\sqrt{17}+\frac1{16}\sqrt{34-2\sqrt{17}}+\frac18\sqrt{17+3\sqrt{17}-\sqrt{34-2\sqrt{17}}-2\sqrt{34+2\sqrt{17}}}, cos172π=161+16117 +16134217 +8117+317 34217 234+217 ,
有兴趣的话大家可以试试.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值