给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。
请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
这里我们利用到在两个数组中求第K小元素的知识:
由于两数组正序,在各数组中分别找第K/2位置的元素进行比较,并将具有较小的数的数组的前三个元素放弃,依次类推,具体的实现如下图所示:
根据图片中的算法可以知道,利用本算法进行第K小元素可以实现,实现的算法复杂度为O(log(N1+N2))符合题意。
本题只需要求最中间大小的元素即可,比如第一个数组长度为8,第二个长度为7,那么只需要求第8小的元素,但如果说偶数咋办,假设两个数组长度都是8,那就需要求第8和第9的元素求平均数,利用下面的计算公式可以将奇数和偶数进行结合。
可自行检验
mid = (len(nums1) + len(nums2) + 1) // 2
mid2 = (len(nums1) + len(nums2) + 2) // 2
整体的算法如下所示:
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
# 将奇数和偶数进行统一
mid = (len(nums1) + len(nums2) + 1) // 2
mid2 = (len(nums1) + len(nums2) + 2) // 2
def getK(nums1,nums2,k):
# 将数组区分长短 令nums1为短数组
if (len(nums1) > len(nums2)):
nums1,nums2 = nums2,nums1
# 短数组是否是空数组
if (len(nums1) == 0) :
return nums2[k - 1]
if (k == 1):
# 说明已经找到前面k-1个数
return min(nums1[0],nums2[0])
# temp用来记录寻找每一次递归的时候需要查找的第几小的数
temp = min(k//2 , len(nums1))
if nums1[temp-1] < nums2[temp-1]:
return getK(nums1[temp:],nums2,k - temp)
else:
return getK(nums1,nums2[temp:],k - temp)
x = getK(nums1,nums2,mid)
y = getK(nums1,nums2,mid2)
return (x + y) / 2
来源:力扣(LeetCode)
链接:leetCode官网
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。