决策树:匹配叶节点相同的树所使用的一些公式

目录

1.enumerate函数

2.sum(axis=0)函数

3.np.searchsorted函数

4.ma.masked_array函数

5.np.zeros_like函数


1.enumerate函数

可以用来按行遍历叶子总数

for i, x_leaf in enumerate(X_leaves)

2.sum(axis=0)函数

可以将数值加到第一行并仅保留第一行

weights = x_weights.sum(axis=0)

3.np.searchsorted函数

数组a中插入数组v(并不执行插入操作),返回一个下标列表,这个列表指明了v中对应元素应该插入在a中那个位置上

np.searchsorted(a, v, side='left', sorter=None)

4.ma.masked_array函数

可以用来对比两个数组,筛选出想要的信息

ma.masked_array(self.y_weights_, mask)

5.np.zeros_like函数

塑造一个和某变量相同维数的元素均为零的向量

np.zeros_like((self.y_train_leaves_), dtype=np.float32)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值