逆元の复习

什么是逆元
当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:
设c是b的逆元,则有b*c≡1(mod m);
则(a/b)%m = (a/b)*1%m = (a/b)*b*c%m = a*c(mod m);
即a/b的模等于a*b的逆元的模;
逆元就是这样应用的

 

乘法逆元,用于解决一个数除以另一个数后取模的问题,如果直接计算除法,整数类型会丢失精度,如果能将除法转化成乘法,问题就会方便许多,于是有了乘法逆元,一个数有逆元的充分必要条件是gcd(a,p)=1,此时逆元唯一存在

乘法逆元求解四种方法:

1. 费马小定理:a^(p-2) (O(lg^2 n),p较大时用快速幂计算,仅当p为素数时可用)

2. 数组打表:inv[i] = inv[p%i]*(p-p/i)%p   (inv[0]=inv[1]=1) (O(n)递推求出所有逆元)

3. 欧拉定理求逆元:a^(-1)≡a^(phi(p)-1)  (mod p)(其中p为素数时phi(p)=p-1,等价于费马小定理)(p不是素数的时候也能用到)

4. 扩展欧几里得求逆元(不管p是否为质数都可求,加上速度快,一般都用这个) :

给定模数m,求a的逆相当于求解ax=1(mod m)
这个方程可以转化为ax-my=1
然后套用求二元一次方程的方法,用扩展欧几里得算法求得一组x0,y0和gcd
检查gcd是否为1
gcd不为1则说明逆元不存在
若为1,则调整x0到0~m-1的范围中即可

PS:这种算法效率较高,常数较小,时间复杂度为O(ln n)

#include<bits/stdc++.h>

using namespace std;

typedef long long ll;

void exgcd(ll a,ll b,ll& d,ll& x,ll& y)
{
    if(!b) { d = a; x = 1; y = 0; }
    else{ exgcd(b, a%b, d, y, x); y -= x*(a/b); }
}

ll inv(ll a, ll p)
{
    ll d, x, y;
    exgcd(a, p, d, x, y);
    return d == 1 ? (x+p)%p : -1;
}

int main()
{
    ll a,p;
    while(1)
    {
        scanf("%lld %lld",&a,&p);
        printf("%lld\n",inv(a,p));
    }
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值