影刀RPA自动批量采集知乎热点回答

一、 背景说明

zhihu作为一个知识分享平台,聚集了大量专业人士和行业领袖的高质量回答。这些回答往往包含了丰富的信息和深刻的见解,具有很高的数据价值。

随着用户数量的增长,平台上每天产生的信息量巨大,很难从中快速找到真正有价值和高质量的内容。

对于玩zhihu的人来说,能够高效地获取热点问题下的高赞回答,对于曝光,引流非常关重要。

今天分享一个RPA自动采集高赞回答!!!

二、需求分析

获取一些高赞回答的方法有多种:

  1. 利用zhihu的搜索和排序功能:在zhihu上搜索相关话题或问题时,可以使用平台提供的排序功能,选择“按赞同数排序”来快速找到高赞回答

  2. 关注热点问题和热榜:有热榜功能,它会展示当前讨论热度最高的问题,这些问题下的高赞回答也较容易找到

  3. 创作中心:通常创作中心,创作灵感可以看到近期热点数据和一些潜力问题

今天的案例是使用第一种方法。

三、流程拆解

1、打开知乎首页

图片

2、点击搜索框,输入关键词搜索

图片

3、点击筛选,选择筛选条件

图片

4、获取内容

图片

四、流程搭建

流程图:

图片

1、准备一个excel文件,打开

图片

图片

2、打开知乎首页

图片

3、点击输入框

图片

图片

4、填写输入框

图片

5、点击筛选

图片

图片

6、点击只看回答

图片

图片

7、点击最多赞同

图片

图片

8、获取回答列表

图片

图片

回答列表默认都是折叠起来,只展示一部分文本,剩余文本看不到!!!

所以需要点击一下【阅读全文】,让整个文本都展开,

然后采集标题、回答内容和赞同数量,写入到excel文件。

8.1 点击阅读全文

图片

图片

8.2 获取标题

图片

8.3 获取回答内容

图片

8.4 获取赞同数

图片

图片

8.4 写入excel(标题、内容、赞同数)

图片

图片

图片

最后效果图:

图片

附上全流程:

图片

图片

原文链接: RPA自动批量采集知乎热点回答一、 背景说明知乎作为一个知识分享平台,聚集了大量专业人士和行业领袖的高质量回答。icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzkwNjY4MDMyNA==&mid=2247484130&idx=1&sn=80f3b8180de50aacb7b2198b6b9b91a5&chksm=c0e58389f7920a9f9f8377cf6dcfc93d275264a93c09ca567997151d5510b02b71fff8229273&token=315417111&lang=zh_CN#rd

### 影刀RPA 数据采集教程 #### 准备工作 为了成功实施数据采集项目,需掌握一些基础技能和工具。具体来说,熟悉网页元素的操作流程、条件判断与循环结构的应用、Excel文件的读写操作以及列表和字符串处理技术[^4]。 #### 创建新任务并配置浏览器环境 启动影刀RPA软件后,在新建的任务中设置好要使用的浏览器类型(如Chrome),确保能够正常访问目标网站。此过程涉及打开特定网址,并可能需要登录账户或接受Cookies等初始化动作[^2]。 #### 定位页面中的关键元素 通过分析待抓取网页的内容布局,找到用于定位所需信息的关键HTML标签或属性值。利用影刀内置的选择器功能来精确定位这些元素位置,从而为后续的数据提取奠定基础[^3]。 #### 循环遍历多页或多条记录 当面对分页显示的结果集或是多个独立的商品详情页时,编写逻辑控制语句使得程序能自动翻阅各页码或将光标移动到下一个目标项上继续执行相同的操作序列直至完成全部项目的扫描。 #### 提取感兴趣的信息片段 针对已锁定的目标区域内的具体内容——例如药品名称、描述文字或其他特征参数——运用正则表达式匹配或者XPath路径解析等方式将其准确无误地截取出并存储起来等待进一步加工处理。 #### 去重清洗原始收集所得资料 由于网络传输过程中可能出现异常情况造成部分冗余副本混入最终成果之中;因此有必要采取措施去除重复项以提高数据质量。一种常见做法是在导入数据库之前先对临时缓存区里的所有条目按照唯一标识符进行筛选过滤。 #### 将整理好的结果导出至外部介质 最后一步就是把经过上述一系列步骤精心挑选出来的有效情报汇总成易于分享的形式,比如CSV格式文档或者是直接填充进预先设定模板下的电子表格里以便于后期统计分析使用。 ```python import pandas as pd data = { '药品名称': ['阿司匹林', '布洛芬'], '参考价格(元)': [5.9, 8.5], } df = pd.DataFrame(data) # 导出 Excel 文件 df.to_excel('medicine_data.xlsx', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值