自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 MOT多目标跟踪之CenterTrack

MOT多目标跟踪之CenterTrack

2022-07-01 13:06:52 728 1

原创 MOT多目标跟踪之JDE

多目标跟踪算法之JDE算法

2022-07-01 12:40:06 1253

原创 Object Detection-Backbone系列汇总

文章目录前言一、Backbone是什么二、Backbone1.MobileNet系列2.ShuffleNet系列3.ResNext4. Res2Net5. ResNest6.2. HRnet7. HourGlass总结前言本篇主要为自己学习mmdetection框架和目标检测中Backbone的学习记录。(仅供自己学习使用)提示:以下是本篇文章正文内容,下面案例可供参考一、Backbone是什么Backbone是目标检测中的主干部分,主要是为了提取图片的特征信息,Backbone部分对网络的检

2021-04-09 22:56:52 832

原创 从0开始安装并运行yolov5(仅供自己学习使用)

1.创建环境 conda create -n yolo python = 3.82.安装pytorch1.7以上,这边安装了1.7.1版本的pip install torch1.7.1+cu101 torchvision0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html用下列指令安装其他包git clone https://github.com/ultralytics/yolov5p

2021-04-09 21:14:49 4313 3

原创 FPN以及其他结构FPN——Bi-FPN重点(仅供自己学习使用)

FPNFPN特征金字塔结构。由于目标检测中对小物体检测很困难,因为卷积过程中,大物体的像素点多,小物体的像素点少,随着卷积的深入,大物体的特征容易被保留,小物体的特征越往后越容易被忽略。所以产生了FPN结构。如下图就是FPN结构图。其对特征点进行不断的下采样后,拥有了一堆具有高语义内容的特征层,然后重新进行上采样,使得特征层的长宽重新变大,用大size的feature map去检测小目标。当然不可以简单只上采样,因为这样上采样的结果对小目标的特征与信息也不明确了,因此我们可以将下采样中,与上采样中

2021-04-09 20:57:09 25281 9

原创 ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21‘ not found 问题解决,仅需一行代码

遇到这个问题,可能是GCC版本太低导致的。 vi ~/.bashrc在配置文件中加入LD_LIBRARY_PATH="/home/xxx/anaconda3/lib/:$LD_LIBRARY_PATH"export LD_LIBRARY_PATHsource ~/.bashrc

2021-04-09 10:58:40 381 2

原创 Transformer在cv中的应用(检测部分)(仅供自己学习使用)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、cv中的Transformer论文(检测部分)检测DERTDeformable-DETR前言随着Transformer在NLP中的热潮,在cv领域也有人考虑其应用方向。提示:以下是本篇文章正文内容,下面案例可供参考一、cv中的Transformer论文(检测部分)检测DERT论文名字 End to End Object Detection With Transformer源码:https://github.

2021-04-08 13:59:32 1866 1

原创 NLP中Transformer理解以及CV中Transformer(仅供自己学习用)

更提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、NLP中Transformer二、模型介绍1.结构总结前言NLP中Transformer理解以及CV中Transformer。阅读Transformer并看一些cv中的transformer应用提示:以下是本篇文章正文内容,下面案例可供参考一、NLP中Transformer是什么 更准确地讲,Transformer由且仅由self-Attenion和Feed Forward Neural Netwo

2021-04-08 13:17:15 1208 1

原创 轻量级网络的学习(仅供自己学习观看)(Objection Detection Backbone系列一)

每周学习4.1-4.7阅读backbone相关网络模型(轻量级网络MobileNetv1,v2,v3和ShufflieNet系列、ResNext)(轻量级网络框架中没有,看的网上找的源码)(源码链接B站搜MobileNet就好)(仅是粗略介绍分析,详细可搜知乎相关介绍和看论文)MobileNet系列和ShuffleNet系列是专注于在移动设备上的轻量级神经网络,MobileNetv1亮点是将普通卷积替换为深度可分离卷积和提出两个超参数a和β,深度可分离卷积大大地减少了计算量,从而达到提升网络运算

2021-04-08 10:34:21 1360 2

原创 从零开始安装mmdetection(供自己学习用)

1.创建环境 conda create -n mmdetection python=3.72.安装pytorch=1.6(稳定)pip install torch1.6.0+cu101 torchvision0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html3.pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.6.0/

2021-04-08 10:29:13 288

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除