神经网络中中常见的激活函数

工作中常用的激活函数

  1. Sigmoid:常应用于二分类场景的输出层
    在这里插入图片描述
    如上图所示:
  • sigmoid 在定义域内处处可导,且两侧导数逐渐趋近于0。
  • 如果X的值很大或者很小的时候,那么函数的梯度(函数的斜率)会非常小,在反向传播的过程中,导致了向低层传递的梯度也变得非常小。此时会出现梯度消失,现象,一般来讲训练效果都不会太好。
  • 一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象。而且,该激活函数并不是以0为中心的,所以在实践中这种激活函数使用的很少。sigmoid函数一般只用于二分类的输出层。
  1. tanh(双曲正切曲线)
    在这里插入图片描述
    如上图所示:
  • tanh也是一种非常常见的激活函数。与sigmoid相比,它是以0为中心的,使得其收敛速度要比sigmoid快,减少迭代次数。然而,从图中可以看出,tanh两侧的导数也为0,同样会造成梯度消失。
  • 若使用时可在隐藏层使用tanh函数,在输出层使用sigmoid函数。
  1. RELU
    在这里插入图片描述
  • ReLU是目前最常用的激活函数。
  • 从图中可以看到,当x<0时,ReLU导数为0,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。然而,随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。这种现象被称为神经元死亡

sigmoid和Relu激活函数对比:

  • sigmoid函数反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练。
  • Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。
  • 采用sigmoid函数,计算量大(指数运算),反向传播求误差梯度时,求导涉及除法,计算量相对大,而采用Relu激活函数,整个过程的计算量节省很多

当前针对sigmoid和Relu激活函数的问题,有学者又研究出了
4. LeakReLu:该激活函数是对RELU的改进
在这里插入图片描述

  • 主要解决了x < 0 ,使用relu激活函数的梯度消失的问题。
  1. SoftMax激活函数
    softmax用于多分类过程中,它是二分类函数sigmoid在多分类上的推广,目的是将多分类的结果以概率的形式展现出来。
    在这里插入图片描述
  2. ELU这两年也陆续有人开始使用,相对leakrelu解决了拐点不平滑的问题。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值