朴素贝叶斯算法之fetch_20newsgroups案例

数据下载

使用sklearn下载速度会非常缓慢,建议使用先用百度网盘下载后,再按照网上教程进行操作即可获得数据。

链接:https://pan.baidu.com/s/1xjF1O6s_sL44psOqnsx6Iw
提取码:3hxn
复制这段内容后打开百度网盘手机App,操作更方便哦

朴素贝叶斯算法

朴素贝叶斯算法特点是假设所有特征的出现相互独立互不影响,每一特征同等重要

通过对训练集文本进行词频处理,然后对比测试集文本词频进行分析,获得该文本可能属于各类别的概率,概率最大的即为预测结果。

库导入

from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
#获取数据
    news = fetch_20newsgroups(subset='all')
#拆分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)

 朴素贝叶斯算法对数据处理时,必须进行文本特征抽取

#特征工程
    #使用tf-idf进行文本特征抽取
    tf = TfidfVectorizer()

    #以训练集中词的列表进行每篇文章重要性统计
    x_train = tf.fit_transform(x_train)
    x_test = tf.transform(x_test)
  #调用朴素贝叶斯算法 alpha为拉普拉斯平滑系数 
    nav = MultinomialNB(alpha=1.0)
    nav.fit(x_train,y_train)

    y_predict = nav.predict(x_test)
    score = nav.score(x_test,y_test)

完整代码:

from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer

def naivebayes():
    #朴素贝叶斯算法进行文本分类

    #获取数据
    news = fetch_20newsgroups(subset='all')

    #拆分训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25)

    #特征工程
    #使用tf-idf进行文本特征抽取
    tf = TfidfVectorizer()

    #以训练集中词的列表进行每篇文章重要性统计
    x_train = tf.fit_transform(x_train)
    x_test = tf.transform(x_test)

    #调用朴素贝叶斯算法 alpha为拉普拉斯平滑系数
    nav = MultinomialNB(alpha=1.0)
    nav.fit(x_train,y_train)

    y_predict = nav.predict(x_test)
    score = nav.score(x_test,y_test)

    print(tf.get_feature_names())
    print(x_train)
    print("预测的文章类型:",y_predict)
    print("准确率:",score)
    return  None

if __name__ == "__main__":
    naivebayes()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

顾十方

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值