基于copula函数的联合分布曲面图绘制

# 安装并加载所需的包
if (!require(lattice)) {
  install.packages("lattice")
  library(lattice)
}
library(copula)
library(PearsonDS)


#-————————联合分布图#####
# 定义皮尔逊Ⅲ型分布参数
EX <- 30.05
CV <- 1.13
CS <- 1.13 * 3.5
a1 <- 4 / (CS^2)
a2 <- EX * (1 - 2 * CV / CS)
a3 <- EX * CV * CS / 2
pIIIpars <- list(shape = a1, location = a2, scale = a3)
# Lognormal 分布参数seq2
meanlog_ln <- 1.73157317
sdlog_ln <- 0.06610561

clayton_cop <- claytonCopula(param = 0.47)
# 生成模拟的x和y数据
x <- seq(4.52, 212, length.out = 100)
y <- seq(5.01, 6.62, length.out = 100)
u<-ppearsonIII(x,params =pIIIpars)
v<-plnorm(y,meanlog = meanlog_ln, sdlog = sdlog_ln)
uv<-cbind(u,v)

# 生成模拟的z数据(这里用简单的函数生成示例,实际中应为联合概率值)
z <- outer(u, v, function(a, b) pCopula(cbind(a,b), clayton_cop))

# 将数据转换为适合 wireframe 函数的格式
data <- expand.grid(x = x, y = y)
data$z <- as.vector(z)
# 使用 wireframe 函数绘制三维曲面图
wireframe(z ~ x * y, data = data,
          xlab = "序列1",
          ylab = "序列2",
          zlab = "联合概率",
          main = "联合分布图",
          scales = list(arrows = FALSE),
          drape = TRUE,
          colorkey = TRUE,
          screen = list(z = 30, x = -60))

#-————————联合重现期#####
# 生成模拟的x和y数据
x <- seq(4.52, 212, length.out = 100)
y <- seq(5.01, 6.62, length.out = 100)
u<-ppearsonIII(x,params =pIIIpars)
v<-plnorm(y,meanlog = meanlog_ln, sdlog = sdlog_ln)
uv<-cbind(u,v)

# 生成模拟的z数据(这里用简单的函数生成示例,实际中应为联合概率值)
z <- outer(u, v, function(a, b) 1/(1-pCopula(cbind(a,b), clayton_cop)))

# 将数据转换为适合 wireframe 函数的格式
data <- expand.grid(x = x, y = y)
data$z <- as.vector(z)
# 使用 wireframe 函数绘制三维曲面图
wireframe(z ~ x * y, data = data,
          xlab = "序列1",
          ylab = "序列2",
          zlab = "联合重现期",
          main = "联合重现期",
          scales = list(arrows = FALSE),
          drape = TRUE,
          colorkey = TRUE,
          screen = list(z = 30, x = -60))

#-————————同现重现期#####
# 生成模拟的x和y数据
x <- seq(4.52, 212, length.out = 100)
y <- seq(5.01, 6.62, length.out = 100)
u<-ppearsonIII(x,params =pIIIpars)
v<-plnorm(y,meanlog = meanlog_ln, sdlog = sdlog_ln)
uv<-cbind(u,v)

# 生成模拟的z数据(这里用简单的函数生成示例,实际中应为联合概率值)
z <- outer(u, v, function(a, b) 1/(1-a-b+pCopula(cbind(a,b), clayton_cop)))

# 将数据转换为适合 wireframe 函数的格式
data <- expand.grid(x = x, y = y)
data$z <- as.vector(z)
# 使用 wireframe 函数绘制三维曲面图
wireframe(z ~ x * y, data = data,
          xlab = "序列1",
          ylab = "序列2",
          zlab = "同现重现期",
          main = "同现重现期",
          scales = list(arrows = FALSE),
          drape = TRUE,
          colorkey = TRUE,
          screen = list(z = 30, x = -60))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值