最长公共子序列-java

采用动态规划算法解决最长公共子序列问题

public class 最长公共子序列 {

    public static void GET_LCS(int []X,int []Y){
        int m = X.length+1;
        int n  = Y.length+1;
        int [][] b = new int[m][n];//存储路径
        int  [][] c = new int[m][n];//存储LCS值
        for(int i = 0;i<m;i++){
            c[i][0] = 0;
            b[i][0] = 0;
        }
        for(int j = 0;j<n;j++){
            c[0][j] = 0;
            b[0][j] = 0;
        }
        
         LCS_LENGTH(X,Y,b,c,m,n);
         PRINT_LCS(b,X,m-1,n-1);
         for(int i = 0;i<m;i++){
                for(int j = 0;j<n;j++){
                    System.out .print(b[i][j] + "  ");
                }
                System.out .println("  ");
            }
    }
    public static void LCS_LENGTH(int[] X,int []Y,int[][]b,int[][]c,int m,int n){
        for(int i =1;i<m;i++){
            for(int j = 1;j<n;j++){
                if(X[i-1] == Y[j-1]){
                    c[i][j] = c[i-1][j-1] +1;
                    b[i][j] =  0;//0代表左上
                }else if(c[i-1][j] >=c[i][j-1]){
                    c[i][j] = c[i-1][j];
                    b[i][j] = 1;//1代表上
                }else{
                    c[i][j] = c[i][j-1];
                    b[i][j] = 2;//2代表左
                }
            }
        }
    }
    public static int PRINT_LCS(int [][] b,int []X,int i,int j){
        if(i==0||j==0){
            return 0;
        }
        if(b[i][j] ==0){
            PRINT_LCS(b,X,i-1,j-1);
            System.out .println(X[i-1]);
        }else if(b[i][j]==1){
            PRINT_LCS(b,X,i-1,j);
        }else{
            PRINT_LCS(b,X,i,j-1);
        }
        return 0;
    }

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        int [] X = {1,5,6,9,7,8,3,9};
        int [] Y = {1,4,6,7,8,3};
        GET_LCS(X,Y);
    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值