题目:
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-common-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。
暴力算法,常规思路
从样例输入输出入手,输入两个字符串:abcde/ace。
按照字符串角标走的话,从左往右,角标同时想有移动,遇到相同字符则最长公共子序列+1。
两个字符串角标分别是i,j,如果i=0,j=0,那么我们可以知道s1[0]=s2[0],这时公共最长子序列有了字母a,那么剩下需要判断的则是 bcde 和 ce的公共最长子序列。
让i,j同时+1明显是不行的。
肉眼可以看到在剩下要判断的字符串中 s[2]是"c" s[1]是"c"。
也就是如果让i=i+1, j=j 是可以顺利找到下一个相同字符的。可是我们计算机不知道。
假象另一种情况 ,如果两个字符串是acbde afce,那么 i=i, j=j+1就能让我们找到下一个相同字符。
所以这里要同时计算 i=i, j=j+1 和 i=i+1, j=j 看哪种情况最终返回的长度大。
图解为
明显,这种算法效率为O(2^N)
下面是编码:
import static java.lang.Math.max;
public class LeetCode1143 {
public static int dp(String text1,String text2,int maxlen){
if(text1.charAt(0) == text2.charAt(0)){
String ttext1 = text1.substring(1,text1.length());
String ttext2= text2.substring(1,text2.length());
maxlen = maxlen + 1;
if(ttext1.length()>0 && ttext2.length()>0) {
return dp(ttext1, ttext2, m