最长公共子序列-LeetCode1143图解

本文介绍了LeetCode1143题目的解法,重点解析了如何通过暴力算法和动态规划来求解两个字符串的最长公共子序列。通过图解和代码示例详细阐述了动态规划的优化过程,帮助理解如何提高算法效率。
摘要由CSDN通过智能技术生成

题目:
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-common-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。

暴力算法,常规思路
从样例输入输出入手,输入两个字符串:abcde/ace。
按照字符串角标走的话,从左往右,角标同时想有移动,遇到相同字符则最长公共子序列+1。
两个字符串角标分别是i,j,如果i=0,j=0,那么我们可以知道s1[0]=s2[0],这时公共最长子序列有了字母a,那么剩下需要判断的则是 bcde 和 ce的公共最长子序列。
让i,j同时+1明显是不行的。
肉眼可以看到在剩下要判断的字符串中 s[2]是"c" s[1]是"c"。
也就是如果让i=i+1, j=j 是可以顺利找到下一个相同字符的。可是我们计算机不知道。
假象另一种情况 ,如果两个字符串是acbde afce,那么 i=i, j=j+1就能让我们找到下一个相同字符。
所以这里要同时计算 i=i, j=j+1 和 i=i+1, j=j 看哪种情况最终返回的长度大。
图解为

在这里插入图片描述
明显,这种算法效率为O(2^N)
下面是编码:

import static java.lang.Math.max;
public class LeetCode1143 {
   
    public static  int dp(String text1,String text2,int maxlen){
   
        if(text1.charAt(0) == text2.charAt(0)){
   

            String ttext1 = text1.substring(1,text1.length());
            String ttext2= text2.substring(1,text2.length());
            maxlen = maxlen + 1;
            if(ttext1.length()>0 && ttext2.length()>0) {
   
                return dp(ttext1, ttext2, m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值