机器学习-白板推导系列笔记(二十六)-sigmoid信念网络

此文章主要是结合哔站shuhuai008大佬的白板推导视频:sigmoid信念网络_92min

全部笔记的汇总贴:机器学习-白板推导系列笔记

对应花书19.5、20.10

一、背景介绍

在这里插入图片描述
sigmoid信念网络是一种具有特定条件概率分布的有向图模型的简单形式。一般我们将sigmoid信念网络视为具有二值向量的状态 s s s,其中状态的每个元素都受其祖先的影响。

s = { s 1 , s 2 , ⋯   , s T } = { v , h } = { v , h ( 1 ) , h ( 2 ) } σ ( x ) = 1 1 + exp ⁡ ( − x ) s=\{s_1,s_2,\cdots,s_T\}=\{v,h\}=\{v,h^{(1)},h^{(2)}\}\\\sigma(x)=\frac1{1+\exp(-x)} s={ s1,s2,,sT}={ v,h}={ v,h(1),h(2)}σ(x)=1+exp(x)1 1 − σ ( x ) = 1 + exp ⁡ ( − x ) 1 + exp ⁡ ( − x ) − 1 1 + exp ⁡ ( − x ) = exp ⁡ ( − x ) 1 + exp ⁡ ( − x ) = 1 1 + exp ⁡ ( x ) = σ ( − x ) 1-\sigma(x)=\frac{1+\exp(-x)}{1+\exp(-x)}-\frac1{1+\exp(-x)}\\=\frac{\exp(-x)}{1+\exp(-x)}=\frac1{1+\exp(x)}=\sigma(-x) 1σ(x)=1+exp(x)1+exp(x)1+exp(x)1=1+exp(x)exp(x)=1+exp(x)1=σ(x)
P ( s i = 1 ∣ s j : j < i ) = σ ( ∑ j < i w j i ⋅ s j ) P ( s i = 0 ∣ s j : j < i ) = 1 − σ ( ∑ j < i w j i ⋅ s j ) = σ ( − ∑ j < i w j i ⋅ s j ) P(s_i=1|s_{j:j<i})=\sigma(\sum_{j<i}w_{ji\cdot s_j})\\P(s_i=0|s_{j:j<i})=1-\sigma(\sum_{j<i}w_{ji\cdot s_j})\\=\sigma(-\sum_{j<i}w_{ji\cdot s_j}) P(si=1sj:j<i)=σ(j<iwjisj)P(si=0sj:j<i)=1σ(j<iwjisj)=σ(j<iwjisj)
P ( s i ∣ s j : j < i ) = σ ( s i ∗ ∑ j < i w j i ⋅ s j ) s i ∗ = 2 s i − 1 P(s_i|s_{j:j<i})=\sigma(s_i^*\sum_{j<i}w_{ji}\cdot s_j)\\s_i^*=2s_i-1 P(sisj:j<i)=σ(sij<iwjisj)si=2si1

二、Gradient of log-likelihood

这里为了推导方便,我们没有考虑偏执 b b b

P ( s ) = ∏ i P ( s i ∣ s j : j < i ) = P ( v , h ) P(s)=\prod_iP(s_i|s_{j:j<i})=P(v,h) P(s)=iP(sisj:j<i)=P(v,h)

log-likelihood:

∑ v ∈ V l o g P ( v ) \sum_{v\in V}log P(v) vVlogP(v)
∂ ∂ w i j log ⁡ P ( v ) = 1 P ( v ) ∂ ∂ w i j P ( v ) = 1 P ( v ) ∂ ∑ h P ( v , h ) ∂ w i j = ∑ h 1 P ( v ) ∂ P ( v , h )

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值