- 博客(297)
- 资源 (5)
- 收藏
- 关注
原创 论文阅读 - Unify Graph Learning with Text: Unleashing(释放) LLM Potentials for Session Search
会话搜索涉及用户为满足复杂的信息需求而进行的一系列交互式查询和操作。当前的策略通常优先考虑顺序建模以深入了解语义,往往忽略了交互中的图结构。另一方面,虽然有些方法侧重于捕捉结构行为数据,但它们对文档使用的是通用表示法,忽略了细微的词级语义建模。在本文中,我们提出了一种名为“符号图排名器”(SGR)的模型,旨在利用最新的大型语言模型(LLM)的强大功能,同时发挥基于文本和基于图的方法的优势。具体来说,我们首先介绍了一种使用符号语法规则将图结构数据转换为文本的方法。这样就能将。
2024-09-27 19:00:10 657
原创 论文阅读- On the Feasibility of Fully AI-automated Vishing Attacks
网络钓鱼攻击是社会工程学的一种形式,攻击者利用电话欺骗个人披露敏感信息,如个人数据、财务信息或安全凭证。攻击者利用(exploit)语音通信的紧迫性(urgency)和真实性(aythenticity)来操纵受害者,通常冒充银行或技术支持等合法(legitimate)实体。在这项工作中,我们研究了随着人工智能的出现,网络钓鱼(vishing)攻击升级的可能性。从理论上讲,人工智能驱动的软件机器人可能有能力自动实施这些攻击,通过电话与潜在受害者展开对话,欺骗他们披露敏感信息。
2024-09-26 09:44:42 1155
原创 论文阅读 - SWATTING Spambots: Real-time Detection of Malicious Bots on X
在 X(前身为 Twitter)等社交网络平台上,垃圾邮件机器人的活动日益猖獗,引发了人们对信息质量和用户体验的担忧。本研究提出了一种在 X 平台上实时检测和报告垃圾邮件机器人的创新方法。利用数据分析技术,我们调整了一个综合框架,该框架能够根据垃圾邮件账户的行为模式和特征对其进行准确识别和分类。通过为这一日益严重的问题提供有效的解决方案,我们的研究旨在增强用户对社交媒体交流渠道的信任,为用户相互交流和分享信息营造一个更加透明和真实的网络环境。
2024-09-24 09:38:50 1166
原创 论文阅读 - MDFEND: Multi-domain Fake News Detection
假新闻在社交媒体上广泛传播,涉及政治、灾难和金融等多个领域,对现实世界造成威胁。现有的大多数方法侧重于单域假新闻检测(SFND),当这些方法应用于多域假新闻检测时,其性能并不令人满意。作为一个新兴领域,多域假新闻检测(MFND)越来越受到关注。然而,不同领域的数据分布(如词频和传播模式)各不相同,这就是域偏移。面对严重的域转移挑战,现有的假新闻检测技术在多域场景下表现不佳。因此,设计一种专门的 MFND 模型就显得尤为重要。在本文中,作者首先为 MFND 设计了一个带有领域标签注释的假新闻基准数据集。
2024-09-20 17:29:09 876
原创 强化学习系列 学习
基于与环境互动得到的结果好坏进行学习没有标准答案,但对结果的好坏有特定的标准输入为state,输出为actionAlphaGo 没有标准答案,但是有输赢;人学习走路:走的更快更稳chatgpt是因为RL才产生大的突破自身做出行为,输入到复杂环境中得到一个结果,根据某种规则判断行为好坏,并调整行为,之后做的更好其最终目的是得到一个policy,告诉我们在所以state中,最佳reward的action应该是什么大多数问题的环境太过复杂,无法被充分建模,只能通过与环境互动学习在环境中如何达成目的。
2024-09-19 16:23:31 291
原创 论文阅读 - SELF-REFINE: Iterative Refinement with Self-Feedback
与人类一样,大型语言模型(LLMs)并非总能在首次尝试时产生最佳输出结果。受人类如何完善书面文本的启发,作者引入了 SELF-REFINE,这是一种通过迭代反馈和完善来改进 LLM 初始输出的方法。其主要思路是使用 LLM 生成初始输出;然后,同一 LLM 为其输出提供反馈,并利用反馈反复改进自身。不需要任何有监督的训练数据、额外的训练或强化学习,而是使用单个 LLM 作为生成器、改进器和反馈提供者。作者使用最先进的 LLM(GPT-3.5 和 GPT-4)对 SELF-REFINE 在。
2024-09-17 20:57:27 1011
原创 论文阅读-Demystifying Misconceptions in Social Bots Research
对社交机器人的研究旨在增进知识,并为最受争议的网络操纵形式之一提供解决方案.然而,社会机器人的研究却受到普遍偏见、夸大结果(hyped results)和误解的困扰(plague),这些都为模棱两可、不切实际(unrealistic)的期望和看似不可调和的结果埋下了伏笔。克服这些问题有助于(instrumental)确保可靠的解决方案并重申科学方法的有效性.在这篇文章中,我们回顾了社交机器人研究的一些最新成果,强调并修正了事实错误以及方法和概念偏差。
2024-09-16 13:08:55 1179
原创 论文阅读 - Coordinated Activity Modulates the Behavior and Emotions ofOrganic Users
社交媒体已成为全球危机期间迅速传播信息的重要渠道。然而,这也为恶意行为者操纵叙事铺平了道路。本研究深入探讨了加沙冲突期间 Twitter 上协调(恶意)实体与有机(普通)用户之间的互动动态。通过分析来自 130 多万用户的约 350 万条推文,我们的研究发现,协同用户对信息格局产生了重大影响,成功地在网络上传播了他们的内容:他们的信息有相当一部分被普通用户采纳和分享。此外,研究还记录了有机用户对协同内容的参与度逐渐增加,与此同时,他们在随后的交流中也明显转向了情感上更加极化的表达方式。
2024-09-06 19:46:13 1103
原创 论文阅读-How Do Social Bots Participate in Misinformation Spread? A Comprehensive Dataset and Analysis
信息通过社交媒体平台传播的速度比传统媒体更快,从而成为传播错误信息的理想媒介。与此同时,被称为社交机器人的自动化账户对错误信息的传播做出了更大的贡献。在本文中,我们探讨了社交机器人与新浪微博平台上的错误信息之间的相互作用。我们提出了一个全面且大规模的错误信息数据集,包含 11,393 个错误信息和 16,416 个具有多种模态信息的无偏见真实信息,以及 952,955 个相关用户。我们提出了一种可扩展的弱监督方法来注释社交机器人,获得了68,040 个社交机器人和 411,635 个真实帐户。
2024-09-02 14:49:43 926 1
原创 论文阅读-Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Si
社交媒体已经成为社会运动的基石,在推动社会变革方面发挥着重要作用。模拟公众的反应和预测潜在的影响变得越来越重要。然而,现有的模拟这种现象的方法在捕捉社会运动参与者的行为方面遇到了功效和效率方面的挑战。在本文中,我们引入了一个用于社交媒体用户模拟的混合框架HiSim,其中用户分为两种类型。核心用户由大型语言模型驱动,而众多普通用户则由基于演绎代理的模型建模。我们进一步构建了一个类似twitter的环境来复制它们在触发事件后的响应动态。随后,我们开发了一个。
2024-09-02 11:00:50 693
原创 论文阅读 - Let Silence Speak: Enhancing Fake News Detection with Generated Comments from Large Language
假新闻检测在保护社交媒体用户和维护健康的新闻生态系统方面发挥着至关重要的作用。在现有的工作中,基于评论的假新闻检测方法被经验证明是有前途的,因为评论可以反映用户的意见、立场和情感,并加深模型对假新闻的理解。不幸的是,由于曝光偏差和用户不同的评论意愿,现实中获得多样化的评论并不容易,特别是对于早期检测场景。在没有获得“沉默”用户的评论的情况下,感知到的意见可能是不完整的,从而影响新闻真实性的判断。在本文中,作者探讨了寻找替代评论来源的可能性,以保证不同评论的可用性,尤其是来自沉默用户的评论。
2024-06-14 16:18:41 879 2
原创 论文阅读-DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
大型语言模型受到事实性和幻觉方面的挑战的限制,无法直接使用现成的方法来判断新闻文章的真实性,而事实准确性是至关重要的。在这项工作中,作者提出DELL,它确定了错误信息检测的三个关键阶段,其中LLM可以作为管道的一部分纳入其中:1)LLM可以生成新闻反应来代表不同的观点并模拟用户新闻交互网络;2)LLM可以为代理任务(例如情绪、立场)生成解释,以丰富新闻文章的上下文,并培养专门从事新闻理解各个方面的专家;3)LLM可以合并特定任务的专家,并通过合并不同专家的预测和置信度得分来提供总体预测。
2024-06-13 17:00:34 1133
原创 论文阅读 - Toward Mitigating Misinformation and Social Media Manipulation in LLM Era
在社交媒体上普遍存在的滥用错误信息影响公众舆论的现象在各个领域都变得越来越明显,其中包括政治领域(如总统选举)和医疗保健领域(尤其是在最近的 COVID-19 泛舆论事件中)。随着大型语言模型(LLM)的发展,操纵者可以更高效地生成极具说服力的欺骗性内容,这种威胁也变得越来越严重。此外,最近与 LLMs 集成的聊天机器人(如 ChatGPT)也取得了长足进步,能够创建类似人类的交互式社交机器人,这对人类用户和社交媒体平台的社交机器人检测系统都构成了巨大挑战。
2024-06-05 11:24:15 1230
原创 爬虫 -- 使用selenium和scrapy爬取BBC、NYTimes、Snopes等网站的内容
通过数据管道,你可以对爬取到的数据进行一系列的处理,例如清洗数据、验证数据、将数据保存到数据库等。是 Scrapy 项目中的一个文件,用于定义数据结构,也称为 "item"。中间件是在 Scrapy 中处理请求和响应的钩子(hooks),它们可以用于修改或处理 Scrapy 发出的每一个请求和收到的每一个响应。是 Scrapy 项目中的一个配置文件,用于定义和配置项目的各种设置和参数。文件通常是一个 Scrapy 爬虫脚本,这里的示例用于定义从 New York Times 网站上爬取数据的爬虫。
2024-06-04 15:55:37 2206 1
原创 remote: You are not allowed to push code to this project.
显示是我自己的,因此需要重新配置为师姐的。场景: 在我的电脑上替师姐上传代码。
2024-05-30 14:51:18 572
原创 论文阅读 - TIME-LLM: TIME SERIES FORECASTING BY REPROGRAMMING LARGE LANGUAGE MODELS
时间序列预测在许多真实世界的动态系统中具有重要意义,并已得到广泛研究。与自然语言处理(NLP)和计算机视觉(CV)不同,在自然语言处理和计算机视觉中,一个大型模型可以处理多个任务,而时间序列预测模型往往是专门的,需要针对不同的任务和应用进行不同的去符号化。虽然预训练基础模型在 NLP 和 CV 领域取得了令人瞩目的进展,但它们在时间序列领域的发展却受到了数据稀缺性的限制。最近的研究表明,大型语言模型(LLM)对复杂的标记序列具有强大的模态识别和推理能力。然而,如何有效地。
2024-05-28 21:58:08 2251
原创 论文阅读 - VisionLLM: Large Language Model is also an Open-Ended Decoder for Vision-Centric Tasks
在计算机视觉领域,尽管有许多功能强大的视觉基础模型(VFMs),但它们难以与 LLMs 的开放式任务能力相媲美。以视觉为中心的任务提出了一个基于 LLM 的框架,称为 VisionLLM。该框架将图像视为一种外语,并将以视觉为中心的任务与可使用语言指令灵活定义和管理的语言任务相统一,从而为视觉和语言任务提供了一个统一的视角。基于 LLM 的解码器可以根据这些指令对开放式任务进行适当的预测。大量实验表明,所提出的VisionLLM 可以通过语言指令实现不同程度的任务定制。
2024-05-28 16:31:56 836
原创 论文阅读-Exploring the Deceptive Power of LLM-Generated Fake News: A Study of Real-World Detection
大型语言模型(LLMs)的最新进展使得假新闻的制造成为可能,尤其是在医疗保健等复杂领域。研究凸显了LLM 生成的假新闻在有人工辅助和无人工辅助情况下的欺骗性差距,但提示技术的潜力尚未得到充分挖掘。因此,本研究旨在确定提示策略能否有效缩小这一差距。目前基于 LLM 的假新闻攻击:(1)需要人工干预信息收集,(2)缺乏详细的支持性证据,(3)无法保持上下文的一致性。因此,为了更好地了解威胁策略,作者提出了一种强假新闻攻击方法,称为条件变异自动编码器类似提示(VLPrompt)。
2024-05-21 19:39:29 1126
原创 论文阅读-Language Evolution for Evading Social Media Regulation via LLM-based Multi-agent Simulation
推特(Twitter)、Reddit 和新浪微博等社交媒体平台在全球交流中发挥着至关重要的作用,但在地缘政治敏感地区却经常遭遇严格的监管。这种情况促使用户巧妙地改变他们的交流方式,在这些受管制的社交媒体环境中经常使用编码语言。这种交流方式的转变不仅仅是一种对抗监管的策略,更是语言进化的生动体现,展示了语言是如何在社会和技术压力下自然演变的。研究受监管社交媒体语境中的语言演变对于确保言论自由、优化内容审核和推进语言学研究具有重要意义。本文提出了一种使用大型语言模型(LLM)的多代理模拟框架,以。
2024-05-17 21:24:21 831
原创 论文阅读- GPT-generated Text Detection: Benchmark Dataset and Tensor-based Detection Method
在本文中,作者介绍了 GPT Reddit 数据集(GRiD),这是一个由Generative Pretrained Transformer ((GPT)生成的新型文本检测数据集,旨在评估检测模型在识别ChatGPT 生成的回复方面的性能。该数据集由基于 Reddit 的各种上下文-提示对组成,其中既有人工生成的回复,也有ChatGPT 生成的回复。作者对数据集的特点进行了分析,包括语言多样性、上下文复杂性和回复质量。为了展示该数据集的实用性,在该数据集上对几种检测方法进行了基准测试,证明了。
2024-05-16 21:58:23 1046 3
原创 论文阅读-From Creation to Clarification: ChatGPT’s Journey Through the Fake News Quagmire
作者探讨 ChatGPT 在生成、解释和检测假新闻方面的能力,具体如下。生成--采用不同的提示方法生成假新闻,并通过自我评估和人工评估证明了这些实例的高质量。解释--根据 ChatGPT 的解释获得九个特征来描述假新闻,并分析这些因素在多个公共数据集中的分布情况。检测--研究了 ChatGPT 识别假新闻的能力。作者提出了一种理由感知提示方法来提高其性能。进一步探究了可提高其检测假新闻效率的潜在额外信息。
2024-05-16 20:41:17 840
原创 论文阅读- Stylometric Detection of AI-Generated Text inTwitter Timelines
预训练语言模型的最新进展为大规模生成类人文本提供了方便的方法。尽管这些生成能力在突破性应用方面具有巨大潜力,但它也可能成为对手生成错误信息的工具。特别是,像推特这样的社交媒体平台非常容易受到人工智能产生的错误信息的影响。一个潜在的威胁场景是当对手劫持了一个可信的用户帐户,并在公司内部使用自然语言生成器来生成错误信息。这种威胁需要在给定用户的推特时间轴上对人工智能生成的推文进行自动检测器。然而,推文本身就很短,因此,
2024-05-16 16:38:37 1152 1
原创 论文阅读 - Anatomy of an AI-powered malicious social botnet
大型语言模型(LLM)在生成跨不同主题的真实文本方面表现出令人印象深刻的能力。人们担心它们可能被用来制作具有欺骗性意图的虚假内容,尽管迄今为止的证据仍然是轶事。本文介绍了一个关于 Twitter 僵尸网络的案例研究,该僵尸网络似乎利用 ChatGPT 来生成类似人类的内容。通过启发式方法,作者识别了1,140 个帐户并通过手动注释对其进行验证。这些帐户形成了密集的虚假角色集群,这些角色表现出类似的行为,包括发布机器生成的内容和窃取的图像,并通过回复和转发相互互动。ChatGPT 生成的内容会。
2024-05-15 16:00:04 1138
原创 jinja2常用基本语法
FileSystemLoader中传入的是文件夹的名称,可以传入多个文件夹名称,该类会自动查找其路径。使用了 {% include 'port_conf.sub.conf.tpl' -%}data为list时,模板中可用data.0取第一个值'1.1.1.1'jinja2模板使用if 条件判断。传参数到jinja2模板文件。jinja2模板使用for循环。include导入其他模板。jinja2模板使用过滤器。jinja2模块化的模板。加载jinja2的模板。jinja2 模板继承。将渲染的模板写入文件。
2024-04-16 22:50:34 1420
原创 python中的@classmethod
类方法是通过类本身来调用的,而不是通过类的实例来调用。类方法接收的第一个参数是类本身(通常命名为。使用类方法作为工厂函数,可以隐藏对象的创建细节,并在创建对象时执行一些额外的逻辑.由于类方法接收的是类本身作为第一个参数,因此它们可以用于修改类级别的状态或属性。都是类方法,它们分别用于设置和获取类级别的变量。是一个装饰器,用于指示一个方法是一个类方法;是一个类方法,用作工厂函数来创建类的实例。方法内部调用了类的构造函数。),而不是类的实例。
2024-04-16 20:34:26 223
原创 推特社交机器人分类
机器人系统地产生支持候选人的更积极的内容,这一事实可能会使接触到这些内容的个人对这些内容的看法产生偏见,这表明存在对特定候选人的有机支持,而实际上这都是人为产生的。然而,每当这位政治候选人从他的官方账户发布一条新推文时,所有自动账户都会在短短几分钟内转发这条推文。最后,机器人更多地是在宣传无害的政治事件,而不是攻击对手或传播错误信息。社交机器人的一个子集被赋予明显的政治任务,政治机器人的使用因政权类型而异。非常容易识别的机器人,它们是自我声明的机器人,其程序员无意隐藏其本质.机器人有不同的种类。
2024-03-27 17:20:10 814
原创 每周论文4-周三-机器人检测攻击-My Brother Helps Me: Node Injection Based Adversarial Attackon Social Bot Detection
像Twitter这样的社交平台正受到大量欺诈用户的围攻。由于社交网络的结构,大多数方法都是基于图神经网络(GNN),容易受到攻击。在这项研究中,作者提出了一种基于节点注入的对抗攻击方法,旨在欺骗机器人检测模型。值得注意的是,当在目标bot周围添加新bot时,目标bot和新注入的bot都无法被检测到。这种攻击以黑盒方式进行,这意味着与受害者模型相关的任何信息都是未知的。这是第一个通过图节点注入来探索机器人检测弹性的研究作者还开发了一个属性恢复模块,将注入的节点嵌入从图嵌入空间恢复到原始特征空间。
2024-03-22 11:40:29 780
原创 每周论文3-周四-多个agent构建 LLM 应用程序-AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
AutoGen是一个开源框架,允许开发人员通过多个代理构建LLM应用程序,这些代理可以相互交谈以完成任务。AutoGen代理是可定制的、可对话的,并且可以在使用llm、人工输入和工具组合的各种模式下操作.AutoGen在AutoGen中,开发人员还可以灵活地定义代理交互行为。自然语言和计算机代码都可以用来为不同的应用程序编写灵活的会话模式。AutoGen应用于不同的案例研究:AutoGen作为一个通用框架,用于构建各种复杂性和LLM能力的各种应用程序。实证研究。
2024-03-21 21:38:33 1200
原创 Claude3介绍
Anthropic这家由OpenAI分裂出去的兄弟公司,悄无声息地、低调地将Claude3推出了Claude系列包括三种最先进的模型,按能力升序排列:Opus 大概意思就是史诗级乐章,牛逼上天那种。Sonnet 是十四行诗。Haiku 是俳句,日本的那种三行短诗。每个连续的模型提供越来越强大的性能,允许用户选择智能,速度和成本的最佳平衡为他们的特定应用。Opus and Sonnet现在可以在claude中使用。Claude API,目前在159个国家普遍可用。Haiku很快就会发布。
2024-03-19 14:17:37 1122
原创 每周论文4-周一- MMoE: Robust Spoiler Detection with Multi-modal Information andDomain-aware Mixture-of-Ex
在线电影评论网站对电影的信息和讨论很有价值。然而,大量的剧透评论影响了观影体验,使得剧透检测成为一项重要任务。以往的方法仅仅关注评论的文本内容,忽略了平台中信息的异质性。例如,评论的元数据和相应的用户信息可能是有用的。此外,电影评论的剧透语言倾向于特定类型,从而对现有方法提出了领域泛化的挑战。作者提出MMoE是一种多模态网络,利用多模态信息实现鲁棒剧透检测,并采用Mixtureof-Experts增强领域泛化。MMoE首先分别从用户-电影网络、评论的文本内容和评论的元数据中提取图、文本和元特征。
2024-03-18 23:17:17 831
原创 每周论文2-周四-社交网络多智能体工作-Social-network Simulation System withLarge Language Model-Empowered Agents
利用大型语言模型(llm)在感知、推理和行为方面的类人能力,并利用这些特性构建S3系统(简称社交网络仿真系统)。采用微调和提示工程技术来确保代理的行为与社会网络中真实的人的行为密切相关。情感、态度和互动行为。通过赋予系统中的代理感知信息环境和模仿人类行为的能力,观察到人口水平现象的出现,包括信息、态度和情绪的传播。进行了一个评估,包括两个层次的模拟(性别歧视和核能),采用现实世界的社会网络数据。结果显示了良好的准确性。这项工作代表了由基于llm的代理授权的社会网络模拟领域的第一步。
2024-03-08 23:20:07 1477 4
原创 每周论文2-周三-基于LLM的多智能体工作综述-Large Language Model based Multi-Agents: A Survey of Progress and Challenges
由于LLM令人印象深刻的规划和推理能力,它们被用作自主代理来自动完成许多任务。基于LLM的多代理系统在复杂问题解决和世界模拟方面取得了进步。(基于llm的多代理模拟哪些域和环境?(这些代理人是如何被描述的,他们又是如何交流的?(什么机制促进了代理人能力的增长?该文章总结了常用的数据集或基准,以便访问。
2024-03-06 23:10:13 1913
原创 每周论文1:What Does the Bot Say? Opportunities and Risks of Large LanguageModels in Social Media Bot
动机:调研最先进的与原模型在社交机器人检测上的机会与危害;方法:设计了基于LLM的机器人检测器,通过利用混合异质专家“mixture-of-hetergeneous-experts”架构去划分和征服何种用户模态信息。说明LLM对检测的危害:探索了LLM操作用户文本和结构信息来避免被检测到的概率。实验:机会:在1000个注释案例上的指令调整产生专业的LLM应用于检测,其性能便优于最新的方法9.1%。危害:LLM指导的操纵策略给现有的机器人检测器带来29.6%的性能下降。
2024-02-27 22:30:47 1101
原创 论文阅读 - HOFA: Twitter Bot Detection with Homophily-Oriented Augmentation and Frequency Adaptive Atten
Twitter 机器人检测已成为一项日益重要和具有挑战性的任务,以打击在线虚假信息,促进社会内容审查,并维护社会平台的完整性。虽然现有的基于图表的 Twitter 机器人检测方法取得了最先进的性能,但它们都是基于同质性假设的,即假设拥有相同标签的用户更有可能被连接,这使得 Twitter 机器人很容易通过跟踪大量真实用户来伪装自己。为了解决这个问题,我们提出了 HOFA,一种新的基于图形的 Twitter 机器人检测框架,它使用面向同质性的图形增强模块(Homo-Aug)和。
2024-02-06 10:27:58 1474
原创 IJCAI2024
在重新提交的情况下,如果以前版本的文件是非匿名的,作者被要求删除/盖上他们的姓名,附属机构和确认的重新提交 PDF,但不改变以前的版本或审查以任何其他方式。作者和审稿人承认,国际法学会可能会对违反利益冲突的个人采取行动,并要求制定论文政策,包括但不限于在未经进一步审查的情况下拒绝其提交的论文,并禁止个人在今后数量有限的国际法学会会议上提交其作品。此外,我们鼓励评审人员检查重新提交的文件是否涉及在对上一版本的评审中指出的事实问题(例如,输入错误、错误的结果归属等) ,并拒绝未能这样做的文件。
2023-12-27 20:56:07 3670 8
原创 论文阅读 - VGAER: Graph Neural Network Reconstruction based Community Detection
社群检测是网络科学中一个基础而重要的问题,但基于图神经网络的社群检测算法为数不多,其中无监督算法几乎是空白。本文通过将高阶模块化信息与网络特征融合,首次提出了基于变异图自动编码器重构的社群检测 VGAER,并给出了其非概率版本。它们不需要任何先验信息。我们根据社群检测任务精心设计了相应的输入特征、解码器和下游任务,这些设计简洁、自然、性能良好(在我们的设计下,NMI 值提高了 59.1% - 56.59%)。
2023-12-06 16:27:49 1294
原创 论文阅读 - Detecting Social Bot on the Fly using Contrastive Learning
社交机器人检测正在成为社会安全领域广泛关注的任务。一直以来,社交机器人检测技术的发展都因缺乏高质量的标注数据而受到阻碍。此外,人工智能生成内容(AIGC)技术的快速发展正在极大地提高社交机器人的创造力。例如,最近发布的ChatGPT[2]可以以74%的概率欺骗最先进的人工智能文本检测方法[3],这给基于内容的机器人检测方法带来了巨大的挑战。为了解决上述缺点,我们提出了一种对比学习驱动的社交机器人检测框架(CBD)。
2023-10-31 08:48:02 1242
原创 论文阅读 - DCGNN: Dual-Channel Graph Neural Network for Social Bot Detection
由于社交机器人检测对信息传播的深远影响,其重要性已得到越来越多的认识。现有的方法可以分为特征工程和基于深度学习的方法,它们主要关注静态特征,例如帖子特征和用户档案。然而,现有方法在区分社交机器人和真实用户时往往忽视了爆发现象,即机器人在长时间交互后突然而剧烈的活动或行为。通过综合分析,我们发现突发行为和静态特征在社交机器人检测中都发挥着关键作用。为了捕捉这些特性,提出了双通道 GNN(DCGNN),它由带有自适应通滤波器的突发感知通道和带有低通滤波器的静态感知通道。
2023-10-30 21:55:41 665
原创 论文阅读 - Learning Human Interactions with the Influence Model
NIPS'01 早期模型要求知识背景: 似然函数,极大似然估计、HMM、期望最大化我们有兴趣对对话环境中人与人之间的互动进行定量建模。虽然有多种模型可能是合适的,如耦合 HMM,但所有模型都需要大量参数来描述链之间的交互。作为替代方案,我们提出了[1]中开发的生成模型--"影响模型",该模型通过对具有恒定 "影响 "参数的成对转换进行凸组合来参数化隐藏状态转换概率。我们为这一模型开发了一种学习算法,并利用合成数据展示了与其他标准模型相比,该模型建立链式依赖关系模型的能力。
2023-10-27 17:55:40 975
原创 论文阅读 - Hidden messages: mapping nations’ media campaigns
几个世纪以来,有权势的行为者一直在进行信息控制,限制、促进或影响信息环境,以适应其不断发展的机构。在数字时代,信息控制已经转移到了网上,信息行动现在瞄准了在新闻参与和公民辩论中发挥关键作用的网络平台。在本文中,我们使用离散时间随机模型来分析在线社交网络中的协调活动,将账户行为表示为相互作用的马尔可夫链。
2023-10-26 21:42:14 842
论文:On the efficacy of old features for the detection of new bots
2022-12-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人