
7种正则化方法
正则化是一种降低机器学习模型过拟合风险的技术。L1正则化公式:L2正则化公式:L1正则化实际上就是L1范数,L1简单示意图:L2正则化实际是L2范数,L2简单示意图:从上面两图可以看出L1和L2正则化函数是凸函数,可行域是凸集,对应的问题是一个凸优化问题 -- 简单问题(可以看王木头学科学的视频,我这里介绍的不清楚:“L1和L2正则化”直观理解(之一),从拉格朗日乘数法角度进行理解_哔哩哔哩_bilibili。
算法学习
编程
虚假信息检测
LLM-Agent
社交机器人检测
数据集
机器学习
谣言检测
前沿讲座
欺诈检测
图异常节点检测
自然语言处理
知识图谱
对比学习
会议介绍
GNN
立场检测
论文写作
terminal
WAN
Metric
邮件
WWW
ICCL
IJCAI
AAAI
ACL
IEEE TRANSACTIONS
Arxiv
ACM
SCI
CIKM
并行计算
情感计算
深度学习
矩阵论 
