无脑敲代码,bug漫天飞
码龄7年
关注
提问 私信
  • 博客:922,091
    社区:458
    动态:4
    922,553
    总访问量
  • 301
    原创
  • 7,205
    排名
  • 979
    粉丝
  • 38
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 毕业院校: 中国科学院大学
  • 加入CSDN时间: 2017-10-17
博客简介:

qq_40671063的博客

博客描述:
努力学习的渣渣
查看详细资料
  • 原力等级
    成就
    当前等级
    8
    当前总分
    5,021
    当月
    37
个人成就
  • 获得1,417次点赞
  • 内容获得259次评论
  • 获得5,019次收藏
  • 代码片获得14,273次分享
创作历程
  • 38篇
    2024年
  • 88篇
    2023年
  • 175篇
    2022年
成就勋章
TA的专栏
  • 算法学习
    8篇
  • 编程
    97篇
  • 虚假信息检测
    8篇
  • LLM-Agent
    2篇
  • 社交机器人检测
    68篇
  • 数据集
    9篇
  • 机器学习
    2篇
  • 谣言检测
    6篇
  • 前沿讲座
    2篇
  • 欺诈检测
    1篇
  • 图异常节点检测
    10篇
  • 自然语言处理
    4篇
  • 知识图谱
    27篇
  • 对比学习
    2篇
  • 会议介绍
    8篇
  • GNN
    9篇
  • 立场检测
    2篇
  • 论文写作
    6篇
  • terminal
    10篇
  • WAN
    1篇
  • Metric
    1篇
  • 邮件
  • WWW
    3篇
  • ICCL
    1篇
  • IJCAI
    1篇
  • AAAI
    3篇
  • ACL
    1篇
  • IEEE TRANSACTIONS
    1篇
  • Arxiv
    2篇
  • ACM
    3篇
  • SCI
    2篇
  • CIKM
    1篇
  • 并行计算
    1篇
  • 情感计算
    7篇
  • 深度学习
    16篇
  • 矩阵论
    7篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    机器学习人工智能深度学习自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

7种正则化方法

正则化是一种降低机器学习模型过拟合风险的技术。L1正则化公式:L2正则化公式:L1正则化实际上就是L1范数,L1简单示意图:L2正则化实际是L2范数,L2简单示意图:从上面两图可以看出L1和L2正则化函数是凸函数,可行域是凸集,对应的问题是一个凸优化问题 -- 简单问题(可以看王木头学科学的视频,我这里介绍的不清楚:“L1和L2正则化”直观理解(之一),从拉格朗日乘数法角度进行理解_哔哩哔哩_bilibili。
原创
发布博客 1 小时前 ·
150 阅读 ·
9 点赞 ·
0 评论 ·
4 收藏

回归分析学习

似然函数:什么样的参数与数据组合后,组成y的概率最高;误差: 真实值与预测值之间的误差,对于每个样本都有。针对问题的求解: 利用因变量的观测值y,与估计值之间的离差平方和最小。变量数目: 一元回归(1个X,一个Y);相关分析:2个或两个以上的变量之间的相关程度及大小的统计方法;一元线性回归,一元非线性回归、多元线性回归、多元非线性回归。自变量: x (预测或解释因变量的变量)自变量与因变量的表现形式:线性和非线性。因变量:y (被预测,被解释的变量)以及 x组合,使得其成为y的可能性最高。
原创
发布博客 19 小时前 ·
209 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

论文阅读 - Pre-trained Online Contrastive Learning for Insurance Fraud Detection

医疗保险欺诈一直是医疗行业领域面临的严峻挑战。现有的欺诈检测模型大多集中于离线学习场景。然而,欺诈模式不断演变,使得基于过去数据训练的模型很难检测新出现的欺诈模式,这对医疗欺诈检测提出了严峻的挑战。此外,当前的增量学习模型主要是为了解决灾难性遗忘而设计的,但在欺诈检测中往往表现出次优的性能。为应对这一挑战,本文提出了一种用于医疗保险欺诈检测的创新在线学习方法,命名为 POCL。这种方法结合了对比学习预训练和在线更新策略。对比学习预训练在预训练阶段,利用对比学习预训练来学习历史数据。
原创
发布博客 2024.10.29 ·
1357 阅读 ·
17 点赞 ·
1 评论 ·
14 收藏

论文阅读-Causality Guided Disentanglement for Cross-PlatformHate Speech Detection

目前检测方法往往过于狭隘地关注特定的语言信号或某些词类的使用。当某一平台缺乏用于训练的高质量注释数据时,就会出现另一个重大挑战,需要能适应不同传播变化的跨平台模型。研究引入了一种跨平台仇恨言论检测模型,该模型能够在一个平台的数据上进行训练,并在多个未见过的平台上进行泛化。实现良好跨平台泛化的方法之一是将输入表征分解为不变特征和平台相关特征。学习在不同环境中保持不变的因果关系,可以极大地帮助理解仇恨言论中的不变表征。通过将。
原创
发布博客 2024.10.20 ·
1073 阅读 ·
24 点赞 ·
0 评论 ·
19 收藏

论文阅读 - Unify Graph Learning with Text: Unleashing(释放) LLM Potentials for Session Search

会话搜索涉及用户为满足复杂的信息需求而进行的一系列交互式查询和操作。当前的策略通常优先考虑顺序建模以深入了解语义,往往忽略了交互中的图结构。另一方面,虽然有些方法侧重于捕捉结构行为数据,但它们对文档使用的是通用表示法,忽略了细微的词级语义建模。在本文中,我们提出了一种名为“符号图排名器”(SGR)的模型,旨在利用最新的大型语言模型(LLM)的强大功能,同时发挥基于文本和基于图的方法的优势。具体来说,我们首先介绍了一种使用符号语法规则将图结构数据转换为文本的方法。这样就能将。
原创
发布博客 2024.09.27 ·
715 阅读 ·
7 点赞 ·
0 评论 ·
17 收藏

论文阅读- On the Feasibility of Fully AI-automated Vishing Attacks

网络钓鱼攻击是社会工程学的一种形式,攻击者利用电话欺骗个人披露敏感信息,如个人数据、财务信息或安全凭证。攻击者利用(exploit)语音通信的紧迫性(urgency)和真实性(aythenticity)来操纵受害者,通常冒充银行或技术支持等合法(legitimate)实体。在这项工作中,我们研究了随着人工智能的出现,网络钓鱼(vishing)攻击升级的可能性。从理论上讲,人工智能驱动的软件机器人可能有能力自动实施这些攻击,通过电话与潜在受害者展开对话,欺骗他们披露敏感信息。
原创
发布博客 2024.09.26 ·
1228 阅读 ·
27 点赞 ·
0 评论 ·
29 收藏

论文阅读 - SWATTING Spambots: Real-time Detection of Malicious Bots on X

在 X(前身为 Twitter)等社交网络平台上,垃圾邮件机器人的活动日益猖獗,引发了人们对信息质量和用户体验的担忧。本研究提出了一种在 X 平台上实时检测和报告垃圾邮件机器人的创新方法。利用数据分析技术,我们调整了一个综合框架,该框架能够根据垃圾邮件账户的行为模式和特征对其进行准确识别和分类。通过为这一日益严重的问题提供有效的解决方案,我们的研究旨在增强用户对社交媒体交流渠道的信任,为用户相互交流和分享信息营造一个更加透明和真实的网络环境。
原创
发布博客 2024.09.24 ·
1231 阅读 ·
22 点赞 ·
0 评论 ·
10 收藏

论文阅读 - MDFEND: Multi-domain Fake News Detection

假新闻在社交媒体上广泛传播,涉及政治、灾难和金融等多个领域,对现实世界造成威胁。现有的大多数方法侧重于单域假新闻检测(SFND),当这些方法应用于多域假新闻检测时,其性能并不令人满意。作为一个新兴领域,多域假新闻检测(MFND)越来越受到关注。然而,不同领域的数据分布(如词频和传播模式)各不相同,这就是域偏移。面对严重的域转移挑战,现有的假新闻检测技术在多域场景下表现不佳。因此,设计一种专门的 MFND 模型就显得尤为重要。在本文中,作者首先为 MFND 设计了一个带有领域标签注释的假新闻基准数据集。
原创
发布博客 2024.09.20 ·
978 阅读 ·
24 点赞 ·
0 评论 ·
27 收藏

强化学习系列 学习

基于与环境互动得到的结果好坏进行学习没有标准答案,但对结果的好坏有特定的标准输入为state,输出为actionAlphaGo 没有标准答案,但是有输赢;人学习走路:走的更快更稳chatgpt是因为RL才产生大的突破自身做出行为,输入到复杂环境中得到一个结果,根据某种规则判断行为好坏,并调整行为,之后做的更好其最终目的是得到一个policy,告诉我们在所以state中,最佳reward的action应该是什么大多数问题的环境太过复杂,无法被充分建模,只能通过与环境互动学习在环境中如何达成目的。
原创
发布博客 2024.09.19 ·
310 阅读 ·
5 点赞 ·
0 评论 ·
3 收藏

论文阅读 - SELF-REFINE: Iterative Refinement with Self-Feedback

与人类一样,大型语言模型(LLMs)并非总能在首次尝试时产生最佳输出结果。受人类如何完善书面文本的启发,作者引入了 SELF-REFINE,这是一种通过迭代反馈和完善来改进 LLM 初始输出的方法。其主要思路是使用 LLM 生成初始输出;然后,同一 LLM 为其输出提供反馈,并利用反馈反复改进自身。不需要任何有监督的训练数据、额外的训练或强化学习,而是使用单个 LLM 作为生成器、改进器和反馈提供者。作者使用最先进的 LLM(GPT-3.5 和 GPT-4)对 SELF-REFINE 在。
原创
发布博客 2024.09.17 ·
1079 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

论文阅读-Demystifying Misconceptions in Social Bots Research

对社交机器人的研究旨在增进知识,并为最受争议的网络操纵形式之一提供解决方案.然而,社会机器人的研究却受到普遍偏见、夸大结果(hyped results)和误解的困扰(plague),这些都为模棱两可、不切实际(unrealistic)的期望和看似不可调和的结果埋下了伏笔。克服这些问题有助于(instrumental)确保可靠的解决方案并重申科学方法的有效性.在这篇文章中,我们回顾了社交机器人研究的一些最新成果,强调并修正了事实错误以及方法和概念偏差。
原创
发布博客 2024.09.16 ·
1230 阅读 ·
24 点赞 ·
0 评论 ·
10 收藏

论文阅读 - Coordinated Activity Modulates the Behavior and Emotions ofOrganic Users

社交媒体已成为全球危机期间迅速传播信息的重要渠道。然而,这也为恶意行为者操纵叙事铺平了道路。本研究深入探讨了加沙冲突期间 Twitter 上协调(恶意)实体与有机(普通)用户之间的互动动态。通过分析来自 130 多万用户的约 350 万条推文,我们的研究发现,协同用户对信息格局产生了重大影响,成功地在网络上传播了他们的内容:他们的信息有相当一部分被普通用户采纳和分享。此外,研究还记录了有机用户对协同内容的参与度逐渐增加,与此同时,他们在随后的交流中也明显转向了情感上更加极化的表达方式。
原创
发布博客 2024.09.06 ·
1120 阅读 ·
26 点赞 ·
0 评论 ·
9 收藏

论文阅读-How Do Social Bots Participate in Misinformation Spread? A Comprehensive Dataset and Analysis

信息通过社交媒体平台传播的速度比传统媒体更快,从而成为传播错误信息的理想媒介。与此同时,被称为社交机器人的自动化账户对错误信息的传播做出了更大的贡献。在本文中,我们探讨了社交机器人与新浪微博平台上的错误信息之间的相互作用。我们提出了一个全面且大规模的错误信息数据集,包含 11,393 个错误信息和 16,416 个具有多种模态信息的无偏见真实信息,以及 952,955 个相关用户。我们提出了一种可扩展的弱监督方法来注释社交机器人,获得了68,040 个社交机器人和 411,635 个真实帐户。
原创
发布博客 2024.09.02 ·
968 阅读 ·
23 点赞 ·
1 评论 ·
20 收藏

论文阅读-Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Si

社交媒体已经成为社会运动的基石,在推动社会变革方面发挥着重要作用。模拟公众的反应和预测潜在的影响变得越来越重要。然而,现有的模拟这种现象的方法在捕捉社会运动参与者的行为方面遇到了功效和效率方面的挑战。在本文中,我们引入了一个用于社交媒体用户模拟的混合框架HiSim,其中用户分为两种类型。核心用户由大型语言模型驱动,而众多普通用户则由基于演绎代理的模型建模。我们进一步构建了一个类似twitter的环境来复制它们在触发事件后的响应动态。随后,我们开发了一个。
原创
发布博客 2024.09.02 ·
736 阅读 ·
10 点赞 ·
0 评论 ·
19 收藏

论文阅读 - Let Silence Speak: Enhancing Fake News Detection with Generated Comments from Large Language

假新闻检测在保护社交媒体用户和维护健康的新闻生态系统方面发挥着至关重要的作用。在现有的工作中,基于评论的假新闻检测方法被经验证明是有前途的,因为评论可以反映用户的意见、立场和情感,并加深模型对假新闻的理解。不幸的是,由于曝光偏差和用户不同的评论意愿,现实中获得多样化的评论并不容易,特别是对于早期检测场景。在没有获得“沉默”用户的评论的情况下,感知到的意见可能是不完整的,从而影响新闻真实性的判断。在本文中,作者探讨了寻找替代评论来源的可能性,以保证不同评论的可用性,尤其是来自沉默用户的评论。
原创
发布博客 2024.06.14 ·
922 阅读 ·
13 点赞 ·
2 评论 ·
32 收藏

论文阅读-DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection

大型语言模型受到事实性和幻觉方面的挑战的限制,无法直接使用现成的方法来判断新闻文章的真实性,而事实准确性是至关重要的。在这项工作中,作者提出DELL,它确定了错误信息检测的三个关键阶段,其中LLM可以作为管道的一部分纳入其中:1)LLM可以生成新闻反应来代表不同的观点并模拟用户新闻交互网络;2)LLM可以为代理任务(例如情绪、立场)生成解释,以丰富新闻文章的上下文,并培养专门从事新闻理解各个方面的专家;3)LLM可以合并特定任务的专家,并通过合并不同专家的预测和置信度得分来提供总体预测。
原创
发布博客 2024.06.13 ·
1194 阅读 ·
30 点赞 ·
0 评论 ·
11 收藏

论文阅读 - Toward Mitigating Misinformation and Social Media Manipulation in LLM Era

在社交媒体上普遍存在的滥用错误信息影响公众舆论的现象在各个领域都变得越来越明显,其中包括政治领域(如总统选举)和医疗保健领域(尤其是在最近的 COVID-19 泛舆论事件中)。随着大型语言模型(LLM)的发展,操纵者可以更高效地生成极具说服力的欺骗性内容,这种威胁也变得越来越严重。此外,最近与 LLMs 集成的聊天机器人(如 ChatGPT)也取得了长足进步,能够创建类似人类的交互式社交机器人,这对人类用户和社交媒体平台的社交机器人检测系统都构成了巨大挑战。
原创
发布博客 2024.06.05 ·
1283 阅读 ·
29 点赞 ·
0 评论 ·
11 收藏

爬虫 -- 使用selenium和scrapy爬取BBC、NYTimes、Snopes等网站的内容

通过数据管道,你可以对爬取到的数据进行一系列的处理,例如清洗数据、验证数据、将数据保存到数据库等。是 Scrapy 项目中的一个文件,用于定义数据结构,也称为 "item"。中间件是在 Scrapy 中处理请求和响应的钩子(hooks),它们可以用于修改或处理 Scrapy 发出的每一个请求和收到的每一个响应。是 Scrapy 项目中的一个配置文件,用于定义和配置项目的各种设置和参数。文件通常是一个 Scrapy 爬虫脚本,这里的示例用于定义从 New York Times 网站上爬取数据的爬虫。
原创
发布博客 2024.06.04 ·
2336 阅读 ·
8 点赞 ·
2 评论 ·
18 收藏

remote: You are not allowed to push code to this project.

显示是我自己的,因此需要重新配置为师姐的。场景: 在我的电脑上替师姐上传代码。
原创
发布博客 2024.05.30 ·
697 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

论文阅读 - TIME-LLM: TIME SERIES FORECASTING BY REPROGRAMMING LARGE LANGUAGE MODELS

时间序列预测在许多真实世界的动态系统中具有重要意义,并已得到广泛研究。与自然语言处理(NLP)和计算机视觉(CV)不同,在自然语言处理和计算机视觉中,一个大型模型可以处理多个任务,而时间序列预测模型往往是专门的,需要针对不同的任务和应用进行不同的去符号化。虽然预训练基础模型在 NLP 和 CV 领域取得了令人瞩目的进展,但它们在时间序列领域的发展却受到了数据稀缺性的限制。最近的研究表明,大型语言模型(LLM)对复杂的标记序列具有强大的模态识别和推理能力。然而,如何有效地。
原创
发布博客 2024.05.28 ·
2672 阅读 ·
19 点赞 ·
0 评论 ·
26 收藏
加载更多