机器学习-白板推导系列笔记(三十三)-流模型

本文是关于机器学习中流模型的笔记,介绍了流模型作为独特的生成模型,通过可逆转换处理分布转换的积分问题。内容涵盖流模型的基本概念,如 Normalizing Flow,以及如何利用Jacobian行列式进行概率计算。文章还提及了流模型的可逆性及其在数据维度一致性上的要求。
摘要由CSDN通过智能技术生成

此文章主要是结合哔站shuhuai008大佬的白板推导视频:流模型_27min

全部笔记的汇总贴:机器学习-白板推导系列笔记

一、简介

流模型是一种比较独特的生成模型,它选择直接直面生成模型的概率计算,也就是把分布转换的积分式( P G ( x ) = ∫ z P ( x ∣ z ) P ( z ) d z P_G(x)=\int_z P(x|z)P(z){d}z PG(x)=zP(xz)P(z)dz)给硬算出来。相比较其他的生成模型采用优化上界或采用对抗训练的方式去避开概率计算,从而寻找近似逼近真实分布的方法,流模型选择的是通过变换Jacobian行列式来求解。

流模型有一个非常与众不同的特点是,它的转换通常是可逆的。也就是说,流模型不仅能找到从A分布变化到B分布的网络通路,并且该通路也能让B变化到A,简言之流模型找到的是一条A、B分布间的双工通路。当然,这样的可逆性是具有代价的——A、B的数据维度必须是一致的

二、Normalizing Flow

在这里插入图片描述
Assuming:

x = f ( z ) ,          z , x ∈ R p z ∼ P z ( z ) , x ∼ P x ( x ) x=f(z),\;\;\;\;z,x\in \R^p\\z\sim P_z(z),x\sim P_x(x) x=f(z),z,xRpzPz(z),xPx(x)
f is continuous invertible
因为, ∫ z P z ( z ) d z = 1 = ∫ x P x ( x ) d x \int_z P_z(z){d}z=1=\int_x P_x(x){d}x zPz(z)dz=1=xPx(x)dx
所以,

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值