中科大-凸优化 笔记(lec49)-无约束和有约束优化问题

这篇笔记详述了无约束和有约束优化问题,包括梯度下降、最速下降、坐标下降、子梯度下降等算法。在有约束优化部分,讲解了KKT条件,并分别讨论了线性和非线性方程组的情况。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、无约束优化问题及算法

min ⁡ f ( x ) g r a d i e n t    d e s c e n t    d k = − ∇ f ( x k ) s t e e p e s t    d e s c e n t    d k = arg min ⁡ ∣ ∣ v ∣ ∣ = 1 { ∇ f T ( x k ) v } c o o r d i n a t e    d e s c e n t s u b g r a d i e n t    d e s c e n t    d k = − ∂ f ( x k ) ∂ x N e w t o n ′ s    M e t h o d    d k = arg min ⁡ v { ∇ f T ( x ) v + 1 2 v T ∇ 2 f ( x ) v } = − ( ∇ 2 f ( x k ) ) − 1 ∇ f ( x k ) Q u a s i − N e w t e n    M e t h o d    d k = − B − 1 ∇ f ( x k ) \min f(x)\\gradient\;descent\;d^k=-\nabla f(x^k)\\steepest\;descent\;d^k=\argmin_{||v||=1}\{\nabla f^T(x^k)v\}\\coordinate\;descent\\subgradient\;descent\;d^k=-\frac{\partial f(x^k)}{\partial x}\\Newton's\;Method\;d^k=\argmin_v\{\nabla f^T(x)v+\frac12v^T\nabla^2f(x)v\}=-(\nabla^2f(x^k))^{-1}\nabla f(x^k)\\Quasi-Newten\;Method\;d^k=-B^{-1}\nabla f(x^k) minf(x)gradientdescentdk=f(xk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值