数学基础(五)最优化理论(最优化,无约束,有约束,拉格朗日乘子的意义,KKT条件)

目录

一、无约束优化

1.梯度下降法

2.牛顿法

二、有约束优化

1.约束为等式

2.约束为不等式 


一、无约束优化

无约束优化问题十分普遍,如梯度下降法、牛顿法就是无约束的优化算法。

        像最小二乘法、极大似然估计,我们都是通过求导数等于0的方式求得极值,但是有的方程求导无法取得最优解,又当如何呢?

1.梯度下降法

如下图所示,为一个二元函数,我们需要求它的最值,那么用梯度下降算法应该怎么求呢?

 随机设定一个点P,朝那个方向走会使得函数值变小呢?

        我们看下图的等高线,这个等高线是平行于xOy这个平面的,这个等高线就相当于多个横切面,等高线上的函数值是相等的。

        那往那个方向走函数值可以最快的变小呢?,如图所示的箭头为梯度的方向,梯度的方向即增长最快的方向,而我们希望函数值最快的减小,则P应该朝着梯度的反方向移动。

  

那么,为什么向着梯度的负方向下降最快呢?

 假设f(x)是一个n维的函数,f 是个标量,它的梯度是对各个维度求偏导。

假设原始定义的P点为(x_0,y_0) ,假设每次移动的步幅为L,假设移动的方向为θ,则得到它移动后的位置为P',则P-P' 之间的长度为L,PP'与x轴之间的夹角为θ,则P'的坐标为 (x_0+Lcos\theta ,y_0+Lsin\theta)

其移动的变化量为:

则其单位长度变化为:

我们对这个函数进行变换:

        第二行对第一行的式子减了一个,又加了一个,等于没变;然后第三行对第二行进行变换,左式分子分母同时乘sinθ,右式分子分母同时乘cosθ,结果保持不变;当L→0时,即移动的步幅很小,那第三个式子就可以变为,其中f_xf_y分别为f(x,y)对x,y的偏导。

那么该式就只与θ有关。

        我们想要计算最大梯度,也就是计算单位长度变化大的方向,即求得一个θ,使单位长度变化最大。

        我们对进行一个变换。如下图所示:

这个结果是怎么来的呢?

参考:柯西不等式 

什么时候等号成立呢?cosθ=1时,即θ=0时,也就是两个向量同向的时候,即,这样就可以算出θ值了,这个θ值就是梯度的方向。

这就说明了为什么沿着最大梯度的反方向下降最快。

2.牛顿法

下面用两种方法来解释牛顿法,我们的目标都是使f(x)最小。

(1)方法一

我们假设一个函数g(x),我们想一步一步的降低g(x),使之最小,那牛顿法怎么做呢?

随意定义一个点x_n,我们想求下一个更小的点,则求在x_n的切线,该切线与x轴的交点要比x_n更接近最小值。

我们定义了切线:

当y=0时,就是切线与x轴的角点,则得到x_{n+1}

(2)方法二

找到一个二次函数在x_0相切,那这个抛物线怎么求呢?

泰勒展开式:

保留前三项即为所求的二次函数。

我们要求f(x)的最小值,就可以用这个二次函数的最小点来逼近原始函数的最小点,原理与方法一相同。

收敛速度

二、有约束优化

1.约束为等式

如下是一个等式约束的最优化问题,在g(x)=0的条件下,求f(x)的最小值。

下图坐标系中的虚线表示f(x)的等高线,要使f(x)既要满足在g(x)这条曲线上,又要满足这个椭圆的等高线最小,即曲线与椭圆相切的点为最优点,二者的梯度方向是相反的(即 λ <0)。

我们引入拉格朗日函数进行计算:

该函数分别对 x 和 λ 求导使之为0得到两个方程式:

2.约束为不等式 

如下是一个约束为不等式的例子:

圆圈为f(x,y)的等高线,此时的约束为g(x,y)小于等于0,阴影为其约束范围。

当g(x)小于0时,要使得,则λ=0,此时的就不起作用了,当g(x,y)=0时,即f(x,y)的最优值在g(x,y)的领界上,λ不等于0,那么这个约束就起作用了。

我们引入拉格朗日函数得到两个公式:

注意不对  λg(x) 求导,直接让λg(x)=0,这个条件就是KKT条件,λ=0,则约束项不起作用,

看一个例子:

当求解出的x带入g(x)中,发现g(x)是大于0的,则该x点对于g(x)来说是不起作用的。

注意此处的λ>=0,因为f(x)和g(x)的梯度是相反的。

再看一个例子:

  • 5
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Billie使劲学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值