- 博客(55)
- 收藏
- 关注
原创 解决warning: environment variable ‘STAGING_DIR‘ not defined
在根目录~目录下sudo vim ~/.bashrc 增加bash权限。
2024-10-28 16:23:23 260
原创 VBox增强功能、VBoxLinuxAdditions安装、共享文件夹问题解决
VBox增强功能、VBoxLinuxAdditions安装、共享文件夹问题解决
2024-10-28 11:31:32 694
原创 Ubuntu系统忘记密码
1、重新启动,按ESC键进入BootMenu,选择recovery mode(一般是第二个选项)。2、在#号提示符下用cat /etc/shadow,看看用户名。3、输入passwd “用户名”(引号要有的哦)。5、重新启动,用新密码登录。
2024-10-21 19:41:15 130
原创 RuntimeError: CUDA out of memory如何解决
RuntimeError: CUDA out of memory如何解决
2024-09-19 14:46:36 134
原创 注意力机制-SENet
SENet主要思想SENet网络的创新点在于关注channel之间的关系,希望模型可以自动学习到不同channel特征的重要程度。为此,SENet提出了Squeeze-and-Excitation (SE)模块SE模块首先对卷积得到的特征图进行Squeeze操作,得到channel级的全局特征,然后对全局特征进行Excitation操作,学习各个channel间的关系,也得到不同channel的权重,最后乘以原来的特征图得到最终特征。
2024-05-17 10:11:44 171
原创 ubuntu命令行重启
重启命令:法一:reboot法二:shutdown -r now #立刻重启法三:shutdown -r #约30秒重启
2021-12-04 17:15:06 3671
原创 ubuntu用命令行清空回收站的方法
1.打开Trashcd .local/share/Trash/2.查看Trash里的文件ls3.清理回收站sudo rm -rf .local/share/Trash/*
2021-12-04 17:12:10 5445
原创 ubuntu-firefox有网但是打不开网页的解决办法
1.检查ubuntu右上角联网开关是否打开,需要勾选Rnable Networking2.如果能ping通其他主机地址,浏览器却连不上网,很有可能是DNS域名解析的问题
2021-12-04 17:07:25 11796 9
原创 torch.nn 实现上采样——nn.Upsample
CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None)最近邻、线性,、双线性, 双三次(bicubic)和三线性(trilinear)插值算法mode (str, optional) – 可使用的上采样算法,有’nearest’, ‘linear’, ‘bilinear’, ‘bicubic’ and ‘trilinear’. 默认使用’nearest’align_corner
2021-12-02 15:37:11 4428
原创 torch.nn.Conv2d() 用法讲解
Conv2d(in_channels, out_channels, kernel_size, stride,padding, dilation, groups,bias=True, padding_mode=‘zeros’)in_channels:输入的通道数目out_channels: 输出的通道数目kernel_size:卷积核的大小,类型为int 或者元组,当卷积是方形的时候,只需要一个整数边长即可,卷积不是方形,要输入一个元组表示 高和宽。stride: 卷积每次滑动的步长为多少,默认是 1
2021-12-02 14:33:52 3311
原创 激活函数比较优缺点
激活函数:激活函数sigmoid、tanh、ReLU、LeakyReLU、ReLU6https://www.cnblogs.com/itmorn/p/11132494.html激活函数优缺点:https://blog.csdn.net/kuweicai/article/details/939263931.为什么使用激活函数:再深的网络也是线性模型,只能把输入线性组合再输出。不能学习到复杂的映射关系。因此需要激活函数这个非线性函数做转换。2.sigmodsigmod优点:作为最早开始使用的激活
2021-12-02 13:04:52 2774
原创 生成三分图trimap及前景背景融合
参考1参考2一 生成三分图trimapimport randomimport numpy as np import cv2def gen_trimap(alpha): k_size = random.choice(range(1, 5)) # 随机选择核大小 iterations = np.random.randint(1, 20) ###cv2.getStructuringElement( ) ###这个函数的第一个参数表示内核的形状,有三种形状可以选择。矩形:
2021-11-10 17:28:45 1769
转载 im.shape[:2]的意思
img.shape[:2] 取彩色图片的长、宽。如果img.shape[:3] 则取彩色图片的长、宽、通道。关于img.shape[0]、[1]、[2]img.shape[0]:图像的垂直尺寸(高度或长度)img.shape[1]:图像的水平尺寸(宽度)img.shape[2]:图像的通道数在矩阵中,[0]就表示行数,[1]则表示列数。...
2021-11-10 16:29:59 4020
转载 pypytorch中的模型的训练和验证
训练1.利用dataset构建DataLoader2.定义优化器和损失函数3.将模型转到device上4.训练来啦(1)先把梯度清零。数据转到device上(2)反向传播并计算梯度(3)更新参数dataser=MyDataset(file)train_set=DataLoader(dataset,batch_size=16,shuffle=True)model=MyModel().to(device)criterion=nn.MSELoss()optimizer=torch.opti
2021-11-05 17:03:22 741
原创 pytorch中的torch.manual_seed
随机种子使用规则使用原因:在需要生成随机数据的实验中,每次实验都需要生成数据。设置随机种子为了确保每次生成固定的随机数,使得每次实验结果显示一致,有利于实验的比较和改进。PS:在numpy内部 也有随机种子,当你在numpy中的随机数的时候,可以通过如下方式:np.random.seed(seed)python的内置模块random.seed(seed)1.为CPU设置种子,生成随机数torch.manual_seed(seed)2.为特定GPU设置种子,生成随机数torch.suda.ma
2021-11-05 15:44:01 465
原创 python assert()函数
1.断言函数作用断言函数是对表达式布尔值的判断,要求表达式计算值必须为真。可用于自动调试。如果表达式为假,触发异常;如果表达式为真,不会报错。2.使用assert判断数组是否相等np.array.any()和numpy.array.all()np.array.any()是或操作,任意一个元素为True,输出为True。np.array.all()是与操作,所有元素为True,输出为True。当我们的数组是list类型的时候,可直接进行比较。如下我们使用assert(a==b)判断a,b是否相等
2021-10-30 22:35:43 12146
原创 35.搜索插入位置python 二分法
题目:给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。请必须使用时间复杂度为 O(log n) 的算法。示例 1:输入: nums = [1,3,5,6], target = 5输出: 2示例 2:输入: nums = [1,3,5,6], target = 2输出: 1示例 3:输入: nums = [1,3,5,6], target = 7输出: 4示例 4:输入: nums = [1,3,5,6], tar
2021-10-24 20:59:45 385
原创 CycleGAN学习笔记
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2021-10-22 15:27:47 1227
翻译 论文阅读:Scale Match for Tiny Person Detection-微小人物检测的尺度匹配
Scale Match for Tiny Person Detection-微小人物检测的尺度匹配文章目录Scale Match for Tiny Person Detection-微小人物检测的尺度匹配Abstract1.Introduction2.Related WorkDataset for person detection(人检测数据集):CNN-based person detection:Tiny object detection:3.Tiny Person Benchmark3.1.Benc
2021-03-26 11:15:08 2085
翻译 论文阅读:Augmentation for small object detection(小目标检测的增强)-CVPR2019
论文题目:Augmentation for small object detection文章目录论文题目:Augmentation for small object detection1.介绍1.1背景1.2 小目标检测困难的原因2.方法2.1Oversampling2.2 Copy-Pasting3.实验结果3.1Oversampling3.2Copy-Pasted3.3 Copy-Pasted Strategies论文题目:Augmentation for small object detectio
2021-03-25 18:39:54 2294
原创 SPPnet详解
RCNN系列:RCNN,SPPNet,Fast RCNN,Faster RCNN,R-FCN。作者是何凯明SPPNet出现的原因之前的网络,比如LeNet,AlexNet,ZF,VGG等,它们的输入都是固定大小的,为什么要固定大小呐?原因就在最后连接的全连接层上。全连接层的输入一定是固定大小的。这一点很容易理解,因为全连接层网络就是传统的神经网络,传统的神经网络的输入层必定是固定大小的。而卷积神经网络的conv层的输入并不需要固定大小,那么conv层不用固定大小,FC层的输入又要固定大小,那么在这两
2020-12-11 14:22:41 809
原创 EfficientDet(tensorflow2 API)训练步骤
EfficientDet(tensorflow2 API)regulation loss 贡献大,由BN产生1.环境tensorflow2.22.py介绍:xml_to_csv.py:转换xml到csv %可以不用generate_tfrecord.py 将图片和csv文件打包成训练输入 %可以不用create_pascal_tf_record.py 得出record值model_main_tf2.py 可训练,可验证exporter_main_v2.py 模型导出成为可以使用的fro
2020-12-11 14:14:46 632
原创 YOLOv5训练步骤
git clone https://github.com/ultralytics/yolov5.gitcd yolov5pip install -U -r requirements.txt命令行运行:python detect.py支持视频的检测,包括本地摄像头、本地视频文件、m3u8播放地址和rtsp实时流,地址都是跟在参数–source后面:本地摄像头使用的命令:python detect.py --source 0基于rtsp的网络摄像头使用的命令:python detect.py
2020-12-11 14:06:39 4779 5
原创 数据增强
几何变换类和颜色变换类:https://github.com/aleju/imgaug数据增强的几种方式:Mixup:将随机的两张样本按比例混合,分类的结果按比例分配;Cutout:随机的将样本中的部分区域cut掉,并且填充0像素值,分类的结果不变;CutMix:就是将一部分区域cut掉但不填充0像素而是随机填充训练集中的其他数据的区域像素值, 分类结果按一定的比例分配Mosaic:就是图像拼接,将多张图片拼接成一张(论文中Mosaic 混合了 4 张图像,而 CutMix 混合了两张)翻转
2020-12-11 14:01:59 133
原创 调参优化方法
1.好的初始点 + 合适的LR + 好的优化方法基本可以解决大部分问题。如果还不行可以考虑换个loss。其它的花样太多往往很虚。2.有很多无脑的配置确实可以尝试,比如3x3的卷积核,relu激活函数,加shuffle,加数据增强,加BN,加Dropout等。dropout可以从0. 5往上加,optimizer可以用Adam或者SGD+0.8/0.9的Momentum。3.一定要记得实时打印一些结果,比如训练loss、训练accuracy、验证accuracy,能画出图的就画个图。一边看图一边可以发现不
2020-12-11 13:59:47 941
原创 二分法解读:704. 二分查找python
题目给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并 原地 修改输入数组。元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。示例 1:给定 nums = [3,2,2,3], val = 3,函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。你不需要考虑数组中超出新长度后面的元素。解析原地修改的意思:就是在原来的数组上进行修改,不占用其他
2020-10-16 19:58:56 237
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人